首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22766篇
  免费   4036篇
  国内免费   2072篇
电工技术   1291篇
技术理论   2篇
综合类   2278篇
化学工业   1000篇
金属工艺   622篇
机械仪表   1055篇
建筑科学   908篇
矿业工程   474篇
能源动力   683篇
轻工业   372篇
水利工程   2217篇
石油天然气   575篇
武器工业   179篇
无线电   7865篇
一般工业技术   1538篇
冶金工业   487篇
原子能技术   335篇
自动化技术   6993篇
  2024年   78篇
  2023年   554篇
  2022年   790篇
  2021年   1014篇
  2020年   1007篇
  2019年   870篇
  2018年   893篇
  2017年   1097篇
  2016年   1122篇
  2015年   1308篇
  2014年   1781篇
  2013年   1659篇
  2012年   1987篇
  2011年   2021篇
  2010年   1441篇
  2009年   1357篇
  2008年   1307篇
  2007年   1466篇
  2006年   1320篇
  2005年   1127篇
  2004年   898篇
  2003年   793篇
  2002年   606篇
  2001年   443篇
  2000年   347篇
  1999年   270篇
  1998年   239篇
  1997年   182篇
  1996年   171篇
  1995年   135篇
  1994年   148篇
  1993年   93篇
  1992年   90篇
  1991年   32篇
  1990年   39篇
  1989年   26篇
  1988年   26篇
  1987年   14篇
  1986年   48篇
  1985年   14篇
  1984年   15篇
  1983年   13篇
  1982年   3篇
  1981年   7篇
  1980年   5篇
  1979年   2篇
  1977年   2篇
  1959年   8篇
  1958年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
1.
马晶  李鋆垚  张亚球  蔡宇婷 《红外》2022,43(8):44-52
为进一步提高城市生态监测的精确度,在前人开展的城市生态遥感监测研究的基础上引入“区域尺度”的概念,充分考虑小区域范围内不同地物间的交互作用,并利用移动窗口模型(Moving Window-Remote Sensing Ecology Index, MW-RSEI)对沈阳市浑南区的遥感影像进行逐像元分析。实验结果表明,MW-RSEI模型和生态遥感监测模型(Remote Sensing Ecology Index, RSEI)在整体生态评价趋势上表现出一致性。但MW-RSEI模型对城市生态中的细节区域表征更明显。考虑到建筑及裸地周围植被的影响,其较差生态区域的占比仅为6%,生态评价为优的区域占比为11%。研究区生态评价结果表现得较为连续,并未出现明显的断层现象。该结果具有现实意义且与实际生态分布更为符合。MW-RSEI模型在城市生态监测中更为适用,可为相关部门提供一定的技术参考。  相似文献   
2.
In the current work, numerical simulations are achieved to study the properties and the characteristics of fluid flow and heat transfer of (Cu–water) nanofluid under the magnetohydrodynamic effects in a horizontal rectangular canal with an open trapezoidal enclosure and an elliptical obstacle. The cavity lower wall is grooved and represents the heat source while the obstacle represents a stationary cold wall. On the other hand, the rest of the walls are considered adiabatic. The governing equations for this investigation are formulated, nondimensionalized, and then solved by Galerkin finite element approach. The numerical findings were examined across a wide range of Richardson number (0.1 ≤ Ri ≤ 10), Reynolds number (1 ≤ Re ≤ 125), Hartmann number (0 ≤ Ha ≤ 100), and volume fraction of nanofluid (0 ≤ φ ≤ 0.05). The current study's findings demonstrate that the flow strength increases inversely as the Reynolds number rises, which pushes the isotherms down to the lower part of the trapezoidal cavity. The Nuavg rises as the Ri rise, the maximum Nuavg = 10.345 at Ri = 10, Re = 50, ϕ = 0.05, and Ha = 0; however, it reduces with increasing Hartmann number. Also, it increase by increasing ϕ, at Ri = 10, the Nuavg increased by 8.44% when the volume fraction of nanofluid increased from (ϕ = 0–0.05).  相似文献   
3.
为了监测绕组变压器的静态应力场和发生短路等故障时的动态应力变化,设计了一种用于电气设备状态监测的新式FBG传感器。该传感器由聚醚醚酮材料封装的FBG构成,通过内部圆锥形空腔结构实现将轴向应力集中于FBG敏感位置。通过仿真对不同压力强度下传感器结构的应力场部分及形变趋势进行了计算与分析,论证了设计的合理性。实验分别对静态载荷和动态冲击进行测试,结果显示,在静态压载测试中,当100 N相似文献   
4.
Geogrid reinforcement can significantly improve the uplift bearing capacity of anchor plates. However, the failure mechanism of anchor plates in reinforced soil and the contribution of geogrids need further investigation. This paper presents an experimental study on the anchor uplift behavior in geogrid-reinforced soil using particle image velocimetry (PIV) and the high-resolution optical frequency domain reflectometry (OFDR). A series of model tests were performed to identify the relationship between the failure mechanism and various factors, such as anchor embedment ratio, number of geogrid layers, and their location. The test results indicate that soil deformation and the uplift resistance of anchor plates are substantially influenced by anchor embedment ratio and location of geogrids, whereas the number of geogrid layers has limited influence. In reinforced soil, increasing the embedment ratio greatly improves the ultimate bearing capacities of anchor plates and affects the interlock between the soil and geogrids. As the embedment depth increases, the failure surfaces gradually change from a vertical slip surface to a bulb-shaped surface that is limited within the soil. The strain monitoring data shows that the deformations of geogrids are symmetrical, and the peak strains of geogrids can characterize the reinforcing effects.  相似文献   
5.
There are several methods for estimating bed shear stress in the literature, but comprehensive comparisons among them are limited and under specific conditions. This study compared these methods first on a bare smooth bed, and then for a single geobag on a rough bed in the interest of determining the stability of geobags used in riverbank protection structures. The geobag was filled with cement or sand and tested under different open channel flow conditions. The turbulent kinetic energy method appeared to best represent the local bed shear stress on the geobag when using the newly calibrated proportionality constants. The Reynolds stress method via extrapolation was relatively unaffected by changes to the geobags shape and measurement locations, suggesting this method inadequately represents the local bed shear stress. The Patel method and the universal law of the wall method failed to represent local bed shear stress in the rough bed cases due to instrument limitations and the breakdown of the law of the wall. This study highlights the impact of different methods on the bed shear stress estimation.  相似文献   
6.
Higher transmission rate is one of the technological features of prominently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO–OFDM). One among an effective solution for channel estimation in wireless communication system, specifically in different environments is Deep Learning (DL) method. This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder (CNNAE) classifier for MIMO-OFDM systems. A CNNAE classifier is one among Deep Learning (DL) algorithm, in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another. Improved performances are achieved by using CNNAE based channel estimation, in which extension is done for channel selection as well as achieve enhanced performances numerically, when compared with conventional estimators in quite a lot of scenarios. Considering reduction in number of parameters involved and re-usability of weights, CNNAE based channel estimation is quite suitable and properly fits to the video signal. CNNAE classifier weights updation are done with minimized Signal to Noise Ratio (SNR), Bit Error Rate (BER) and Mean Square Error (MSE).  相似文献   
7.
The transparent Er3+-Yb3+-doped fluoro-aluminosilicate glass-ceramic (GC) was prepared by melt-quenching. The crystal phase, morphology, and up-conversion (UC) luminescence of as-produced GC were characterized by X-ray diffraction, scanning electron microscopy, and fluorescence spectrophotometry, respectively. The results show that BaYF5 nanocrystals were uniformly distributed in the glass matrix of the as-produced GC. When the as-produced GC was subjected to heat treatment, the crystallinity was increased, but the crystal identity remains unchanged. Such heat-treatment doubled the intensity of the UC luminescence, and this enhancement was ascribed to the increased incorporation of both Er3+ and Yb3+ ions into the lower phonon energy environment of BaYF5 nanocrystals. Furthermore, the heat-treated GC was stable against further crystallization, and consequently its UC luminescence was stable at the application temperature. The heat-treated GC was found to possess an outstanding temperature-sensing capability.  相似文献   
8.
Halide perovskite glass-ceramic has recently moved into the center of the attention of perovskite research due to their potential for temperature sensing. However, quantum dots glass-ceramic with excellent luminescence performance still needs to be combined with rare-earth (RE) ions to accurately measure temperature. In this work, a novel non-RE doped dual-emission (460 nm and 512 nm) CsPbBr3 quantum dots was obtained in telluride glass via the friction crystallization method, where 512 nm was derived from intrinsic luminescence of quantum dots, and 460 nm was originated from thermally induced bromine vacancy, which can be used for temperature sensing. Fluorescence intensity ratio results indicate that the relative sensitivity of dual-emission could reach 5.6 % K?1 at 323 K. The discovery of non-RE doped CsPbBr3 QDs glass-ceramic with negative thermal quenching uncovers a new optional sensing glass material that surpass traditional RE-doped QDs glass by their tunability and sensitivity.  相似文献   
9.
针对认知双向中继网络在进行数据传输时面临的复杂无线信道场景问题,采用广义κ-μ分布构建认知双向中继网络中的视距和非视距无线传输信道,推导次网络在κ-μ衰落信道下的统一中断概率,并分析次网络在多种单一和混合衰落信道情况下的中断性能。仿真结果表明,无线信道的衰落程度对次网络的中断概率影响显著,依据衰落信道类型合理设置网络参数将有助于提升次网络中断性能。  相似文献   
10.
Photon upconversion of lanthanides has been a powerful means to convert low-energy photons into high-energy ones. However, in contrast to the mostly investigated lanthanide ions, it has remained a challenge for the efficient upconversion of Nd3+ due to the deleterious concentration quenching effect. Here we report an efficient strategy to enhance the upconversion of Nd3+ through the Yb3+-mediated energy cycling in a core-shell-shell nanostructure. Both Nd3+ and Yb3+ are confined in the interlayer, and the presence of Yb3+ in the Nd-sublattice provides a more matched energy for the upconversion transitions occurring at the intermediate state of Nd3+ towards much better population at its emissive levels. Moreover, this design also minimizes the possible cross-relaxation processes at both intermediate level and the emissive levels of Nd3+ which are the primary factors limiting the upconversion performance for the Nd3+-doped materials. Such energy cycling-enhanced upconversion shows promise in temperature sensing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号