首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  国内免费   7篇
  完全免费   14篇
  自动化技术   87篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   12篇
  2010年   14篇
  2009年   11篇
  2008年   10篇
  2007年   10篇
  2006年   6篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1987年   1篇
  1980年   1篇
排序方式: 共有87条查询结果,搜索用时 78 毫秒
1.
快速模糊C均值聚类彩色图像分割方法   总被引:3,自引:3,他引:32       下载免费PDF全文
模糊C均值(FCM)聚类用于彩色图像分割具有简单直观、易于实现的特点,但存在聚类性能受中心点初始化影响且计算量大等问题,为此,提出了一种快速模糊聚类方法(FFCM)。这种方法利用分层减法聚类把图像数据分成一定数量的色彩相近的子集,一方面,子集中心用于初始化聚类中心点;另一方面,利用子集中心点和分布密度进行模糊聚类,由于聚类样本数量显著减少以及分层减法聚类计算量小,故可以大幅提高模糊C均值算法的计算速度,进而可以利用聚类有效性分析指标快速确定聚类数目。实验表明,这种方法不需事先确定聚类数目并且在优化聚类性能不变的前提下,可以使模糊聚类的速度得到明显提高,实现彩色图像的快速分割。  相似文献
2.
“Best K”: critical clustering structures in categorical datasets   总被引:2,自引:2,他引:0  
The demand on cluster analysis for categorical data continues to grow over the last decade. A well-known problem in categorical clustering is to determine the best K number of clusters. Although several categorical clustering algorithms have been developed, surprisingly, none has satisfactorily addressed the problem of best K for categorical clustering. Since categorical data does not have an inherent distance function as the similarity measure, traditional cluster validation techniques based on geometric shapes and density distributions are not appropriate for categorical data. In this paper, we study the entropy property between the clustering results of categorical data with different K number of clusters, and propose the BKPlot method to address the three important cluster validation problems: (1) How can we determine whether there is significant clustering structure in a categorical dataset? (2) If there is significant clustering structure, what is the set of candidate “best Ks”? (3) If the dataset is large, how can we efficiently and reliably determine the best Ks?  相似文献
3.
基于模糊简单多数票法则的模糊聚类组合模型   总被引:1,自引:1,他引:0  
首次将传统的简单多数票法则推广为模糊简单多数票法则.应用最近邻居法则与匈牙利算法,提出一种类的匹配算法,并应用此算法建立不同模糊聚类的类与类间的对应关系;再应用模糊简单多数票法则将匹配后的多个模糊聚类组合成一个组合模糊聚类,由此建立一个新的模糊聚类组合模型.实验结果表明,该组合模型产生的组合模糊聚类不仅优于参与组合的单个模糊聚类,而且优于Evgenia等人提出的组合模糊聚类.  相似文献
4.
核空间中的Xie-Beni指标及其性能   总被引:1,自引:1,他引:1  
普运伟  金炜东  朱明  胡来招 《控制与决策》2007,22(7):829-832,835
针对核空间中模糊聚类算法的有效性评价问题,以核非线性映射为工具,将Xie-Beni指标推广到核Hilbert空间,得到其对应的核化形式,并指出该核化指标与VLL指标的区别和联系.在此基础上,通过比较实验,研究了核化的Xie-Beni指标对高斯核宽度β和模糊指数m的稳定特性.结果表明,核化的Xie-Beni指标较之VLL等其他指标具有更好的性能和可靠性,可优先作为核模糊聚类算法的有效性判据.  相似文献
5.
基于加权模糊c均值聚类的快速图像自动分割算法   总被引:1,自引:1,他引:3       下载免费PDF全文
图像分割是指将一幅图像分解为若干互不交迭的区域的集合,是图像处理和计算机视觉的基本问题之一。为了提高图像分割的效率,提出了一种基于2维直方图加权的塔形模糊c均值(FCM)聚类图像快速分割算法。该方法先通过构造合理的2维直方图对噪声进行抑制;然后通过塔形分解来缩减聚类样本集;最后利用加权FCM聚类算法进行分类。仿真结果表明,该方法的效率明显优于标准的FCM算法。此外,为确定分割的最优类别数c,还引入了一种基于该快速算法的聚类有效性评价函数——修正划分模糊度,实现了最佳图像分割类别数c的自动确定。基于人造图像和实际图像的测试实验结果表明该方法是有效的。  相似文献
6.
A measurement of cluster quality is often needed for DNA microarray data analysis. In this paper, we introduce a new cluster validity index, which measures geometrical features of the data. The essential concept of this index is to evaluate the ratio between the squared total length of the data eigen-axes with respect to the between-cluster separation. We show that this cluster validity index works well for data that contain clusters closely distributed or with different sizes. We verify the method using three simulated data sets, two real world data sets and two microarray data sets. The experiment results show that the proposed index is superior to five other cluster validity indices, including partition coefficients (PC), General silhouette index (GS), Dunn’s index (DI), CH Index and I-Index. Also, we have given a theorem to show for what situations the proposed index works well.  相似文献
7.
一种新的聚类有效性函数   总被引:1,自引:1,他引:2       下载免费PDF全文
聚类有效性函数是用于评价聚类结果优劣的指标,准确地给出初始聚类类别数将使得聚类结果趋于合理化。根据模糊不确定性理论及聚类问题的基本特性,引入了新的紧密度度量指标DiUc),在此基础上提出了一个旨在寻求最优聚类类别数的有效性函数。该函数基于数据集的紧密度与分离度特征,综合考虑了数据成员的隶属度及数据集的几何结构。实验结果表明该有效性函数能够发现最优的聚类类别数,对于分类结构较为明确的数据集表现出良好的性能,并且对于权重系数具有良好的鲁棒性。  相似文献
8.
应用分类方法进行聚类评价*   总被引:1,自引:1,他引:0  
针对现有基于几何结构的聚类有效性指标不能有效解决不同结构数据的聚类结果评价问题,提出了一种使用分类对聚类结果进行评价的方法。该方法把聚类得到的对象类标志作为分类问题的已知类标志,使用交叉验证法对数据集重新分类,通过对比聚类结果与分类结果之间的差异来衡量聚类有效性。一个易于聚类的数据集的结构意味着也容易进行分类,对模拟数据和真实数据的实验和分析验证了该方法的可行性和有效性。  相似文献
9.
In this paper a fuzzy point symmetry based genetic clustering technique (Fuzzy-VGAPS) is proposed which can automatically determine the number of clusters present in a data set as well as a good fuzzy partitioning of the data. The clusters can be of any size, shape or convexity as long as they possess the property of symmetry. Here the membership values of points to different clusters are computed using the newly proposed point symmetry based distance. A variable number of cluster centers are encoded in the chromosomes. A new fuzzy symmetry based cluster validity index, FSym-index is first proposed here and thereafter it is utilized to measure the fitness of the chromosomes. The proposed index can detect non-convex, as well as convex-non-hyperspherical partitioning with variable number of clusters. It is mathematically justified via its relationship to a well-defined hard cluster validity function: the Dunn’s index, for which the condition of uniqueness has already been established. The results of the Fuzzy-VGAPS are compared with those obtained by seven other algorithms including both fuzzy and crisp methods on four artificial and four real-life data sets. Some real-life applications of Fuzzy-VGAPS to automatically cluster the gene expression data as well as segmenting the magnetic resonance brain image with multiple sclerosis lesions are also demonstrated.  相似文献
10.
The problem of classifying an image into different homogeneous regions is viewed as the task of clustering the pixels in the intensity space. In particular, satellite images contain landcover types some of which cover significantly large areas, while some (e.g., bridges and roads) occupy relatively much smaller regions. Detecting regions or clusters of such widely varying sizes presents a challenging task. A modified differential evolution based fuzzy clustering technique, is proposed in this article. Real-coded encoding of the cluster centres is used for this purpose. Results demonstrating the effectiveness of the proposed technique are provided for several synthetic and real life data sets as well as for some benchmark functions. Different landcover regions in remote sensing imagery have also been classified using the proposed technique to establish its efficiency. Statistical significance tests have been performed to establish the superiority of the proposed algorithm.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号