首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  自动化技术   1篇
  2017年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
软件代码提交是最重要的软件版本演化数据之一,被广泛应用于软件审查和软件理解中.对于程序员,提交的理解难度随着受影响的类数量、修改的代码量的增加而增加.本文通过对大量数据的分析发现,识别出提交中核心的修改类(关键类),以及为了完成这个核心修改所进行的依赖性改动的类(非关键类),能够辅助代码提交的理解.受机器学习技术在分类领域有效性的启发,本文提出一种基于机器学习的关键类识别方法,将判定提交中的关键类建模为二分类问题(即:关键和非关键类),从软件演化过程中产生的海量提交数据中抽取可判别性特征来度量类的关键性.在多个数据集上的实验结果表明,我们的方法判定关键类的综合准确率达到了87%;相比于开发人员直接理解提交,使用关键类信息提示来辅助理解提交能够显著提高开发人员的效率和正确率.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号