首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91815篇
  免费   4288篇
  国内免费   4442篇
电工技术   4169篇
技术理论   5篇
综合类   8790篇
化学工业   12582篇
金属工艺   5683篇
机械仪表   3358篇
建筑科学   4194篇
矿业工程   1272篇
能源动力   2753篇
轻工业   5756篇
水利工程   1953篇
石油天然气   4092篇
武器工业   745篇
无线电   6902篇
一般工业技术   13601篇
冶金工业   2686篇
原子能技术   2179篇
自动化技术   19825篇
  2024年   64篇
  2023年   297篇
  2022年   444篇
  2021年   623篇
  2020年   1035篇
  2019年   970篇
  2018年   949篇
  2017年   995篇
  2016年   1491篇
  2015年   2162篇
  2014年   3966篇
  2013年   4747篇
  2012年   4103篇
  2011年   4735篇
  2010年   3999篇
  2009年   5363篇
  2008年   5484篇
  2007年   5851篇
  2006年   5452篇
  2005年   4566篇
  2004年   3945篇
  2003年   3863篇
  2002年   3863篇
  2001年   2925篇
  2000年   3290篇
  1999年   3031篇
  1998年   2575篇
  1997年   2436篇
  1996年   2584篇
  1995年   2708篇
  1994年   2455篇
  1993年   1507篇
  1992年   1531篇
  1991年   1066篇
  1990年   774篇
  1989年   692篇
  1988年   651篇
  1987年   383篇
  1986年   229篇
  1985年   372篇
  1984年   411篇
  1983年   431篇
  1982年   329篇
  1981年   405篇
  1980年   270篇
  1979年   116篇
  1978年   112篇
  1977年   69篇
  1976年   40篇
  1975年   57篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
The effect of dry and wet ball milling of LiFe5O8 ferrite powder on the microstructure and electromagnetic properties of ferrite ceramics was studied using XRD analysis, scanning electron microscopy, dilatometry, thermogravimetry, calorimetry, and measurement of specific magnetization and electrical resistance. The sintering temperature was 1050 °C; the sintering time was 2 h. It was found that ferrite fabricated from dry-milled powder exhibits an ordered α-LiFe5O8 phase with bulk density of 91%. Its saturation magnetization and Curie temperature are 55 emu/g and 628°С, respectively. Specific electrical resistance is 4?106 Ω cm. Wet milling in isopropyl alcohol causes formation of a disordered β-LiFe5O8 phase. Ceramics produced by this method shows higher bulk density (97%) and low porosity, and an order of magnitude lower resistivity. Its saturation magnetization and Curie temperature are 51 emu/g and 607°С, respectively.  相似文献   
2.
《Ceramics International》2021,47(24):34278-34288
Materials exhibiting colossal dielectric constant are the most sought-after materials due to their variety of applications in various electronics industries. NiFe2O4 and LaFeO3 belonging to the spinel and perovskite structures, respectively, were coupled into a nanocomposite by adapting a one-pot sol-gel synthesis. The ratio of NiFe2O4:LaFeO3 was varied and the synthesized materials were studied for their dielectric behaviors. Interestingly, among the samples studied, the nanocomposite with the ratio of 1:2 of NiFe2O4–LaFeO3 exhibited a high dielectric constant value of 10390 at a frequency of 1 kHz with a several-fold increase in conductivity. The high conductivity resulted in a high dielectric loss. The origin of such a high dielectric constant and loss have been attributed to the Maxwell-Wagner type space charge polarization arising from the microstructure that consists of large and continuous grain boundaries, and the conducting phase at the interface, respectively.  相似文献   
3.
Forty samples of optically active falcarindiol analogues are synthesized by using the easily available C2 symmetric (R)- and (S)-1,1’-binaphth-2-ol (BINOL) in combination with Ti(OiPr)4, Zn powder and EtI. Their anticancer activities on Hccc-9810, HepG2, MDA-MB-231, Hela, MG-63 and H460 cells are assayed to elucidate their structure-activity relationships. These results showed that the falcarindiol analogue (3R,8S)- 2 i with the terminal double bond has the most potent anti-proliferation effect on Hccc-9810 cells with IC50 value of 0.46 μM. The falcarindiol analogue (3R,8S)- 2 i can induce obvious Hccc-9810 cell apoptosis in a concentration-dependent manner by Hoechst staining and flow cytometry analysis. The proposed mechanism suggests that the falcarindiol analogue (3R,8S)- 2 i increases LDH release and MDA content, and reduces the levels of SOD activity, which lead to the accumulation of oxidative stress and induce apoptosis in Hccc-9810 cells.  相似文献   
4.
The evolution of new SARS-CoV-2 variants around the globe has made the COVID-19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor-binding motif (RBM) of the receptor-binding domain (RBD) spike glycoprotein, i. e. L452R-E484Q, may play a different role in the B.1.617 (also known as G/452R.V3) variant's pathogenicity and better survival compared to the wild type. Therefore, a thorough analysis is needed to understand the impact of these mutations on binding with host receptor (RBD) and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to explore the impact of specific mutations (L452R-E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2. Our analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic-stability, residual flexibility and structural compactness. Moreover, the new variant had altered the bonding network and structural-dynamics properties significantly. MM/GBSA technique was used, which further established the binding differences between the wild type and B.1.617 variant. In conclusion, this study provides a strong impetus to develop novel drugs against the new SARS-CoV-2 variants.  相似文献   
5.
陈湉湉  邓嵘 《包装工程》2022,43(12):183-191, 198
目的 从设计事理学视角,探讨儿童情感陪伴玩具的设计方法。方法 通过社会调研结合理论分析,提炼7~12岁城市留守儿童情感陪伴玩具中“事”的各外部因素与内部因素,建立合理的儿童情感陪伴玩具设计模型及评价体系。运用案例分析法,结合儿童情感陪伴玩具设计案例与实践,验证设计事理学在实际儿童情感陪伴玩具设计中的应用价值。结论 探索儿童情感陪伴玩具的设计路径,以Combot——具有情感陪伴与寓教于乐功能的儿童情感陪伴玩具为实践案例,证明了基于设计事理学的儿童情感陪伴玩具设计方法是有效可行的,可有效指导儿童玩具设计,满足父母与孩子的情感需求,促进儿童健康成长。  相似文献   
6.
Weak acids inhibit the growth of probiotics, such as Saccharomyces boulardii. We explored the tolerance of S. boulardii to different weak acids. S. boulardii had better fermentation ability under lactic acid conditions compared with acetic and butyric acid conditions; however, the budding of S. boulardii was significantly stronger than that of Saccharomyces cerevisiae under acetic acid conditions. Although the surface structure of S. boulardii was destroyed, it produced more daughter cells. S. boulardii metabolites were also significantly different from S. cerevisiae under acidic stress. The growth of S. boulardii under weak acid conditions differed significantly from that of S. cerevisiae. S. boulardii-mediated fingerprints under weak acid conditions were identified as latent biomarkers, related to fructose and mannose metabolism, tricarboxylic acid cycle, and the glycolysis pathway. Identified biomarkers will aid in the genetic engineering of S. boulardii and other Saccharomyces strains for improved acid resistance and biomass yield.  相似文献   
7.
Mangiferin (MGF) is a phenolic compound isolated from mango, but its poor solubility significantly limits its use. In this study, MGF was embedded into the inner aqueous phase of W1/O/W2 emulsions. Firstly, the dissolution method of MGF was determined. MGF remained stable in solution with pH 13 at 30 min, and its solubility reached 10 mg mL−1. When the pH of MGF solutions was adjusted from pH 13 to pH 6, MGF did not immediately crystallise, providing sufficient time to construct the MGF-loaded W1/O/W2 emulsions. Subsequently, the MGF-loaded W1/O/W2 emulsions were constructed using polyglycerol polyricinoleate (PGPR) and calcium caseinate (CAS). The formation and stability of the W1/O/W2 emulsions were investigated. The MGF-loaded W1/O/W2 emulsions stabilised with 1% PGPR and 1% – 3% CAS exhibited a low viscosity, limited loading capacity, and poor stability. Conversely, the MGF-loaded W1/O/W2 emulsions stabilised by 3%PGPR–3%CAS exhibited optimal loading capacity (encapsulation efficiency = 95.31% and loading efficiency = 0.91%) and stability, which was attributed to the fact that high viscosity and gel state retarded the migration of inner aqueous phase. These results indicated that the W1/O/W2 emulsions stabilised by PGPR and CAS may be a potential alternative for encapsulating mangiferin.  相似文献   
8.
现有的图像修复方法在处理大面积缺失或高度纹理化的图像时,通常会产生扭曲的结构或与周围区域不一致的模糊纹理,无法重建合理的图像结构。为此,提出了一种基于推理注意力机制的二阶段网络图像修复方法。首先通过边缘生成网络生成合理的幻觉边缘信息,然后在图像补全网络完成图像的重建工作。为了进一步生成视觉效果更逼真的图像,提高图像修复的精确度,在图像补全网络采用推理注意力机制,有效控制了生成特征的不一致性,从而生成更有效的信息。所提方法在多个数据集上进行了实验验证,结果表明该图像修复方法的结构相似性指数达到了88.9%,峰值信噪比达到了25.56 dB,与现有的图像修复方法相比,该方法具有更高的图像修复精确度,生成的图像更逼真。  相似文献   
9.
The aim of this work was to optimize the production of a new lipase by a halotolerant bacterial strain Halomonas sp. C2SS100, by means of the response-surface methodology (RSM). The process parameters having the most significant effect on lipase production were identified using the Plackett–Burman screening design-of-experiments. Then, Box–Behnken design was applied to optimize lipase activity and the quadratic regression model of the lipase production was built. Indeed, the lipase yield was increased, and the value obtained experimentally (39 ± 2 U/ml) was very close to the rate predicted by the model (40.3 U/ml). Likewise, optimization of parameters by RSM resulted in 2.78-fold increase in lipase activity. These findings provide the first report on lipase production and optimization by a halotolerant bacterial strain belonging to Halomonas genus. Afterward, the biochemical properties of the produced lipase were studied for apply in oil stains removal. The crude lipase showed a maximum activity at 60°C and at pH ranging from 7 to 10. It displayed an important stability at high temperature, pH, and NaCl. Interestingly, this bacterial lipase exhibited a prominent stability toward some commercial solid and liquid detergents after 30 min of incubation at 50°C. The capability of the crude lipase to eliminate stain was ascertained on polycotton fabric pieces stained with lubricating oil. Whether with the addition of hot water alone or of a commercially available detergent, lipase is able to considerably boost the elimination of oil stains. The actual findings highlight the capacity of Halomonas sp. lipase for energy-efficient biocatalytic application.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号