首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25384篇
  免费   1528篇
  国内免费   1020篇
电工技术   693篇
综合类   1975篇
化学工业   2941篇
金属工艺   7090篇
机械仪表   1472篇
建筑科学   2037篇
矿业工程   600篇
能源动力   354篇
轻工业   791篇
水利工程   197篇
石油天然气   500篇
武器工业   165篇
无线电   696篇
一般工业技术   1941篇
冶金工业   4982篇
原子能技术   82篇
自动化技术   1416篇
  2024年   28篇
  2023年   232篇
  2022年   552篇
  2021年   582篇
  2020年   670篇
  2019年   419篇
  2018年   402篇
  2017年   560篇
  2016年   598篇
  2015年   591篇
  2014年   1433篇
  2013年   1337篇
  2012年   1870篇
  2011年   2022篇
  2010年   1586篇
  2009年   1540篇
  2008年   1203篇
  2007年   1820篇
  2006年   1683篇
  2005年   1376篇
  2004年   1122篇
  2003年   1050篇
  2002年   940篇
  2001年   893篇
  2000年   733篇
  1999年   630篇
  1998年   438篇
  1997年   382篇
  1996年   281篇
  1995年   228篇
  1994年   196篇
  1993年   127篇
  1992年   104篇
  1991年   83篇
  1990年   58篇
  1989年   50篇
  1988年   33篇
  1987年   19篇
  1986年   12篇
  1985年   13篇
  1984年   6篇
  1983年   6篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1973年   2篇
  1964年   2篇
  1961年   2篇
  1958年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
MgAl2O4 transparent ceramics were shaped by a commonly used polyacrylic acid (PAA), which acted as both dispersant and gelling agent. The spinel slurries were prepared by ball-milling MgAl2O4 powder, PAA, and water in an attrition mill. The gelling of slurries happened at room temperature in air atmosphere without any other organic additive. The gelling mechanism was the formation of chelates between Mg2+ and carboxyl groups (-COO) of PAA. The frequency-based testing method was applied to investigate the gelling process of the as-prepared slurry. In addition, a novel in situ characterization method based on a modified indentation testing was invented to better understand the strengthening of the wet green body with time and to guide when demolding could be carried out. After sintering, transparent MgAl2O4 ceramics with high in-line transmittance were resulted.  相似文献   
2.
《Ceramics International》2022,48(18):25975-25983
This work reports the innovative development of a borosilicate glass/Al2O3 tape for LTCC applications using an eco-friendly aqueous tape casting slurry. Polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) were the respective dispersants, while carboxymethyl cellulose (CMC) and styrene acrylic emulsion (SA) were the respective binders. The results showed that PVP was more suitable than PAA as the dispersant for the aqueous casting slurry, and that 1.5 wt% PVP would achieve well dispersion of CABS glass/Al2O3 powder in the aqueous slurry. Moreover, a small amount of 2.0 wt% CMC binder could yield smooth CABS glass/Al2O3 tapes crack free. A high-quality CABS glass/Al2O3 tape with a smooth surface was made from an aqueous slurry containing 1.5 wt% PVP dispersant, 2.0 wt% CMC binder, and 2.0 wt% PEG-400 plasticizer. The density, tensile strength, and surface roughness of the green tape were 2.05 g/cm3, 0.87 MPa, and 148 nm, respectively. The resulting CABS glass/Al2O3 composites sintered at 875 °C exhibited a bulk density of 3.14 g/cm3, a dielectric constant of 8.09, a dielectric loss of 1.0 × 10?3, a flexural strength of 213 MPa, a thermal expansion coefficient of 5.30 ppm/°C, and a thermal conductivity of 3.2 W m?1 K?1, thus demonstrating its broad prospects in LTCC applications.  相似文献   
3.
王维  雷静 《声学技术》2022,41(5):724-728
近年来,通过优化飞行程序降低机场飞机噪声影响成为机场环境保护的重要研究方向。文章首先建立了基于飞机“噪声-功率-距离”数据的噪声计算模型,介绍了平均飞行航迹以及连续爬升运行(Continuous Climb Opera-tion, CCO)离场程序的相关理论,最后以大型国际机场为实例,使用飞机平均飞行航迹进行噪声预测,运用综合噪声模型计算出噪声影响面积并绘制噪声影响等值线图,比较了CCO离场相对常规的标准仪表离场(Standard Instru-ment Departure, SID)的降噪效果。结果表明,CCO离场程序可有效降低机场噪声影响,在高噪声级影响区域的降噪效果更佳。  相似文献   
4.
Cuspidine-based systems are used to control the crystallization in mold fluxes, which is enabled by CaF2 additions. However, excess CaF2 increases the corrosion of casting machines. Therefore, Na2O and K2O are added to the mold flux system to ensure an optimized crystallization and lubrication ability of the flux with the CaF2 content. This study investigated the effect of substituting Na2O with K2O on the volatilization of fluorine in a CaO–SiO2–CaF2-based slag system at high temperatures. The substitution of Na2O with K2O was performed at 5 mol% intervals. The volatilization was observed by thermogravimetric analysis under several isothermal conditions. The mass loss was measured at a heating rate of 5, 10, and 20 K/min. As the temperature increased, the volatilization of the mixed samples increased. The activation energy was calculated using the Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methods. A kinetic analysis of the volatilization of fluorine was conducted using the calculated parameters and several known kinetic models. Consequently, the volatilization of the Na-rich sample was controlled by chemical reactions and that of the K-rich sample was identified to be controlled by a phase-boundary-controlled reaction. These results suggest that the addition of mixed alkali oxide promote the volatilization during the early stages of the reaction. From the post-experimental composition analyses, the remaining Na and K in the samples suggested a different mechanism for the Na and K volatilization. The volatilization of Na increased with time, whereas K volatilized easily during the beginning of the reaction.  相似文献   
5.
《Ceramics International》2022,48(11):15525-15532
In this paper, by simulating the gas phase conditions inside the MgO–Al2O3–C refractories during continuous casting process and combining with thermodynamic analysis, as well as SEM analysis, the gas-gas and gas-solid formation of MA spinel were clarified in carbon containing refractories. Thermodynamic calculations showed that gas partial pressure of CO, O2 and Mg could meet the formation and stable existence conditions of MA spinel in MgO–Al2O3–C refractories under service environment, and nitrogen could not affect the formation of MA spinel at 1550 °C in the thermodynamic condition. The formation processes of MA spinel were analyzed experimentally under embedding carbon atmosphere. The carbon-coated alumina powders in MgO–Al2O3–C refractories prevented the direct contact between magnesia and alumina. Mg gas was formed by carbon thermal reaction, then reacted with alumina (gas-solid) and gas containing aluminum (gas-gas) to generate MA spinel. Through gas-gas or gas-solid reaction, the formation of MA spinel was effectively controlled. By means of SEM analysis, a two-layer structure with dense outer spinel layer and loose inner layer was formed in MgO–Al2O3–C refractories.  相似文献   
6.
吕良 《模具制造》2021,(4):47-49
分析了汽车加油口塑件结构,确定了注射成型方案、进胶方式,并介绍了通过滑块与开模动作配合实现塑件脱模的过程。  相似文献   
7.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
8.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
9.
《Ceramics International》2022,48(4):4904-4910
The anisotropic mechanical properties of ultrasound freeze cast epoxy-ceramic composite materials were studied by measuring flexural strength and fracture resistance curves (R-curves) using both unnotched and notched three-point beam bending experiments, respectively, cut in three different orientations relative to the directional freezing axis. Three ultrasound frequencies of 0.699, 1.39 and 2.097 MHz were used in order to introduce different length scales into the microstructure, with 0 MHz used as the control samples. For all cases, the composites showed higher strength and fracture resistance when the crack plane cut across the direction of ice growth (denoted as the YX orientation). The anisotropic properties were more evident for the material produced without ultrasound (0 MHz) where the flexural strength was approximately 160% higher for the YX orientation compared to two orthogonal orientations. Most of the fracture resistance increase was found to occur within a crack extension, Δa, of ~0.5 mm. Comparing the fracture resistance at Δa = 0.5 mm for the highly anisotropic 0 MHz samples showed that the YX orientation was approximately 86% tougher than the two orthogonal orientations. When the ultrasound operation frequencies of 0.699, 1.39 and 2.097 MHz were applied, the amount of anisotropy in the strength and fracture resistance gradually decreased as the operating frequency increased. The high strength and fracture resistance for the YX orientation was attributed to the alignment of the ceramic particles along the freeze front direction creating a barrier for crack propagation. Ultrasound modifies the material microstructure, introducing relatively dense ceramic layers perpendicular to the freezing front direction that act as an additional, orthogonal barrier to crack propagation. The addition of the denser layers acts to improve the mechanical properties in the weaker orientations and reduce the overall anisotropy.  相似文献   
10.
《Ceramics International》2022,48(5):6069-6077
Alumina mold materials prepared by stereolithography usually have considerable sintering shrinkage, and their properties related to casting have been rarely studied. In this study, alumina molds materials were prepared by stereolithography, and the effects of particle size distribution and sintering temperature on the properties of the materials were investigated. Results show that the viscosity of the slurries decreases as the fraction of fine powder increases, and the particle size distribution affects the curing behaviors slightly. Sintering shrinkage increases as the fraction of fine powder or the sintering temperature increases. Although lower sintering shrinkage can be achieved by sintering at 1350 °C or 1450 °C, the mold materials sintered at lower temperatures would continue to shrink under the service temperature of 1550 °C, and thus 1550 °C is determined as the optimal sintering temperature. As the fraction of fine powder increases, the creep resistance first increases and then decreases, and specimens prepared with 0.1 fraction of fine powder exhibit the best creep resistance with the droop distance of 4.44 ± 0.45 mm. Specimens prepared with 0.1 fraction of fine powder and sintered at 1550 °C exhibit linear shrinkage of 6.36% along the X/Y direction and 11.39% along the Z direction, and have a flexural strength of 78.15 ± 3.50 MPa and porosity of 30.12 ± 0.08%. The resulting material possesses relatively low sintering shrinkage, proper mechanical strength, porosity and high-temperature properties that meet the requirements for casting purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号