首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  国内免费   2篇
  完全免费   5篇
  自动化技术   16篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
基于协同进化微粒群算法的神经网络自适应噪声消除系统   总被引:3,自引:1,他引:2  
在分析前向神经网络结构的基础上,定义了一个与随机数对应的布尔向量,实现了前向神经网络的网络结构与权值联合编码;将网络结构参数作为协同进化微粒群算法子群的划分标志,构造了一种用于神经网络进化设计的协同进化微粒群算法,实现了神经网络的结构和权值协同自适应进化设计,应用于神经网络噪声消除系统,取得了比较好的效果。  相似文献
2.
改进的多种群协同进化微粒群优化算法   总被引:3,自引:1,他引:2  
提出一种改进的基于多种群协同进化的微粒群优化算法(PSO).该算法首先利用免疫算法实现解空间的均匀划分,增加了算法稳定性和全局搜索能力.在运行过程中,通过种群进化信息生成解优胜区域,指导变异生成的微粒群向最优解子空间逼近,提高算法逃出局部最优的能力.将此算法与PSO 算法和多种群协同进化微粒群算法进行比较,数据实验证明,该算法不仅能有效地克服其他算法易陷入局部极小值的缺点,而且全局收敛能力和稳定性均有显著提高.  相似文献
3.
协同粒子群优化算法   总被引:3,自引:2,他引:1  
为解决粒子群优化算法易陷入局部最优的问题,提出了两种新方法协同处理粒子群优化算法:对比平均适应度值差的粒子,用动态Zaslavskii混沌映射公式改进粒子惯性权重与速度矢量,在复杂多变的环境中逐步摆脱局部最优值,动态寻找全局最优值;对好于或等于适应度平均值的粒子,用动态非线性函数调整粒子惯性权重与速度矢量,在保存相对有利环境的基础上逐步向全局最优处收敛.两种方法相辅相成、动态协调,使两个动态种群相互协作、协同进化.实验表明该算法在多个标准测试函数下都超越了同类著名改进算法.  相似文献
4.
基于两种进化模式的双种群协作差分演化算法   总被引:2,自引:2,他引:0       下载免费PDF全文
提出了一种基于两种进化模式的双种群协作差分演化算法(DPDE)。在DPDE中,两个种群通过协作共同进化。首先,各种群以不同的进化模式,通过个体竞争实现自身进化;其次,种群之间基于局部信息传递和共享机制,通过随机交换个体方式相互协作、共同进化,既实现了不同进化模式间的优势互补,又可以改善种群的多样性。对于5个典型Benchmark测试函数,通过与DE和DEfirDE算法的比较表明:DPDE具有更好的全局收敛性和鲁棒性,特别适合求解高维多模态函数的最优化问题。  相似文献
5.
基于协同进化蚁群算法的多播QoS路由算法   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种基于协同进化蚁群算法的求解QoS(Quality of Service)多播路由问题的新算法。算法中控制参数及路由选择策略根据迭代过程所处的不同阶段自适应调整。综合考虑QoS路由中所有约束条件的同时,也充分考虑各个约束自身的独立特性。仿真结果证明了算法收敛速度快,能满足实际网络服务质量的要求。  相似文献
6.
针对用传统方法难以求解的扩展的超二次曲面三维模型参数拟合问题,提出了用协同演化的并行粒子群优化算法求解的新方法。通过对扩展的超二次曲面三维表示特性的研究,设计和实现了基于岛屿群体模型的并行粒子群优化算法,并用协同演化的思想,将约束非线性优化转化为极小极大问题进行求解。实验结果表明用协同演化的并行粒子群优化算法重构扩展的超二次曲面三维模型,扩大了模型表示能力,建模精确且效率高。  相似文献
7.
提出了一种具有学习行为的协同量子粒子群算法(LCQPSO).针对量子粒子群(QPSO)存在的早熟收敛问题,从两方面对其进行改进:引入多子群协同搜索策略提高种群的全局搜索能力,使其在进化后期依然保持多样性;赋予粒子学习行为,提高种群的局部搜索能力.实验中对LCQPSO算法的子群规模与学习概率参数进行了分析,并利用标准测试函数对LCQPSO与PSO、QPSO等算法进行了比较测试,结果表明LCQPSO算法具有更优秀的收敛速度与精度,且能够有效地避免陷入局部极值.  相似文献
8.
提出一种基于差分演化与猫群算法融合的群体智能算法。该算法基于猫群算法的两种行为模式,引进差分演化的思想,根据分组率随机把群体分成两个种群,一个种群执行猫群算法搜寻模式,另一种群执行差分变异模式,算法采用一种信息共享机制,使两个种群在搜索最优解时可以实现协同进化,信息交流。既实现了不同进化模式间的优势互补,又可以增加种群的多样性。对5个基准函数进行仿真实验并分别与DE和CSO进行比较,表明混合算法同时具有全局搜索和局部搜索最优解性能,收敛速度快,计算精度高,更适合用于求解高维复杂函数。  相似文献
9.
主要利用差分进化算法来研究时间约束下的多出救点应急物资调度优化问题。针对传统差分进化算法搜索速度慢、易陷入局部最优解的缺点,提出一个并行协同差分进化算法,将该算法应用于时间约束下的多出救点应急物资调度优化,建立相应的数学模型,在此基础上设计相应的算法。实例验证表明,同遗传算法、标准差分进化算法相比,该算法在解决具有时间约束的多出救点应急物资调度优化问题方面具有较快的搜索速度和较好的寻优能力。  相似文献
10.
关于多无人机航迹优化研究,针对复杂环境下多无人机(UAV)系统的航迹规划,达到摧毁目标最大化,解决不同无人机之间的协同和防撞问题,提出了一种利用合作型协同进化算法的多无人机三维航迹规划方法.利用数字地图建立了无人机安全飞行曲面,采用并行进化的方案,将每个无人机航迹规划当作一个子问题,通过协同函数和无人机间的防撞设计实现各无人机间的时间协同和空间防撞.各子种群采用自适应的进化方法,在保持多样性的同时,保证了算法收敛的快速性.仿真结果表明,算法有效实用,能快速得到各无人机的低空突防三维航迹,可为多无人机航迹优化提供手段.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号