首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17077篇
  免费   2742篇
  国内免费   1759篇
电工技术   1061篇
综合类   1954篇
化学工业   678篇
金属工艺   486篇
机械仪表   465篇
建筑科学   673篇
矿业工程   218篇
能源动力   600篇
轻工业   141篇
水利工程   1732篇
石油天然气   461篇
武器工业   321篇
无线电   5903篇
一般工业技术   852篇
冶金工业   397篇
原子能技术   319篇
自动化技术   5317篇
  2024年   49篇
  2023年   339篇
  2022年   574篇
  2021年   692篇
  2020年   697篇
  2019年   540篇
  2018年   522篇
  2017年   681篇
  2016年   605篇
  2015年   806篇
  2014年   1228篇
  2013年   1210篇
  2012年   1499篇
  2011年   1571篇
  2010年   1257篇
  2009年   1142篇
  2008年   1178篇
  2007年   1311篇
  2006年   1112篇
  2005年   965篇
  2004年   717篇
  2003年   658篇
  2002年   511篇
  2001年   371篇
  2000年   268篇
  1999年   203篇
  1998年   156篇
  1997年   125篇
  1996年   117篇
  1995年   106篇
  1994年   103篇
  1993年   57篇
  1992年   55篇
  1991年   24篇
  1990年   30篇
  1989年   21篇
  1988年   15篇
  1987年   11篇
  1986年   5篇
  1985年   10篇
  1984年   10篇
  1983年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1959年   8篇
  1957年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
新建的龙岩至厦门单线铁路象山隧道断面比较小,使用液压凿岩台车开挖,斜孔掏槽方案受到很大限制。本文介绍了使用液压凿岩台车钻爆开挖象山隧道,选择斜孔掏槽方案实现快速开挖,为类似的隧道工程施工提供经验。  相似文献   
2.
In this paper, we prepare a novel biomimetic caterpillar-like alumina fiber with the characteristic of continuous alumina backbone and fine needle whiskers spine. Then the high-performance caterpillar-like alumina fiber composite proton exchange membrane (CAPEM) is obtained by introducing the amino modified biomimetic caterpillar-like alumina fiber into sulfonated polysulfone (SPSF) matrix, which successfully reasonable construction of the proton conducting channels in both vertical and horizontal orientation. The properties of CAPEM, including proton conductivity, methanol permeability, etc. Are systematically studied. The results show that the proton conductivity of CAPEM increases with rising the temperature, which reaches the maximum of 0.263 S/cm at 80 °C and 100% RH, respectively. The excellent proton conductivity of CAPEM is attributed to the long-range continuous proton conducting channel formed by the horizontal continuous alumina skeleton in the in-plane direction and the vertical overlapped fine needle whiskers spine in the through-plane direction. In addition, the interfacial compatibility between amino modified caterpillar-like alumina fiber and SPSF matrix is enhanced through the reasonable construction of proton conducting channels, which effectively inhibits the methanol permeation of the composite membrane with 4.18 × 10?7 cm2 s?1 and improves the comprehensive performance of the CAPEM.  相似文献   
3.
Higher transmission rate is one of the technological features of prominently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO–OFDM). One among an effective solution for channel estimation in wireless communication system, specifically in different environments is Deep Learning (DL) method. This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder (CNNAE) classifier for MIMO-OFDM systems. A CNNAE classifier is one among Deep Learning (DL) algorithm, in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another. Improved performances are achieved by using CNNAE based channel estimation, in which extension is done for channel selection as well as achieve enhanced performances numerically, when compared with conventional estimators in quite a lot of scenarios. Considering reduction in number of parameters involved and re-usability of weights, CNNAE based channel estimation is quite suitable and properly fits to the video signal. CNNAE classifier weights updation are done with minimized Signal to Noise Ratio (SNR), Bit Error Rate (BER) and Mean Square Error (MSE).  相似文献   
4.
In the current work, numerical simulations are achieved to study the properties and the characteristics of fluid flow and heat transfer of (Cu–water) nanofluid under the magnetohydrodynamic effects in a horizontal rectangular canal with an open trapezoidal enclosure and an elliptical obstacle. The cavity lower wall is grooved and represents the heat source while the obstacle represents a stationary cold wall. On the other hand, the rest of the walls are considered adiabatic. The governing equations for this investigation are formulated, nondimensionalized, and then solved by Galerkin finite element approach. The numerical findings were examined across a wide range of Richardson number (0.1 ≤ Ri ≤ 10), Reynolds number (1 ≤ Re ≤ 125), Hartmann number (0 ≤ Ha ≤ 100), and volume fraction of nanofluid (0 ≤ φ ≤ 0.05). The current study's findings demonstrate that the flow strength increases inversely as the Reynolds number rises, which pushes the isotherms down to the lower part of the trapezoidal cavity. The Nuavg rises as the Ri rise, the maximum Nuavg = 10.345 at Ri = 10, Re = 50, ϕ = 0.05, and Ha = 0; however, it reduces with increasing Hartmann number. Also, it increase by increasing ϕ, at Ri = 10, the Nuavg increased by 8.44% when the volume fraction of nanofluid increased from (ϕ = 0–0.05).  相似文献   
5.
In the present numerical study, the combined effect of temperature-dependent thermal conductivity, linear thermal radiation, and magnetic effect on shear-thinning tangent hyperbolic fluid past a sensor surface has been studied. After converting the modelled partial differential equations into ordinary differential equations by using similarity transformation, the system of equations is tackled with the aid of the shooting method. The influence of important parameters on the fluid motion and energy distribution is displayed graphically and analyzed in detail. The presented simulations depict that a significant rise in fluid velocity is noticed for an enhancement in the magnetic parameter while an opposite trend is observed for the temperature distribution. Moreover, the skin friction coefficient decreases as the squeezed flow index is increased.  相似文献   
6.
Cathode channel of a PEM fuel cell is the critical domain for the transport of water and heat. In this study, a mathematical model of water and heat transport in the cathode channel is established by considering two-phase flow of water and air as well as the phase change between water and vapor. The transport process of the species of air is governed by the convection-diffusion equation. The VOSET (coupled volume-of-fluid and level set method) method is used to track the interface between air and water, and the phase equilibrium method of water and vapor is employed to calculate the mass transfer rate on the two-phase interface. The present model is validated against the results in the literature, then applied to investigate the characteristics of two-phase flow and heat transfer in the cathode channel. The results indicate that in the inlet section, water droplets experience three evolution stages: the growing stage, the coalescence stage and the generation stage of dispersed water drops. However, in the middle and outlet sections of the channel, there are only two stages: the growth of water droplets, and the formation of a water film. The mass transfer rate of phase change in the inlet section of the channel varies over time, exhibiting an initial increase, a decrease followed, and a stabilization finally, with the maximum and stable values of 1.78 × 10?4 kg/s and 1.52 × 10?4 kg/s for Part 1, respectively. In the middle and outlet sections, the mass transfer rate increase firstly and then keeps stable gradually. Furthermore, regarding the distribution of the temperature and vapor mass fraction in the channel, near the upper surface of the channel, the temperature and vapor mass fraction first change slightly (x < 0.03 m) and then rapidly decrease with fluctuations (x > 0.03 m). In the middle of the channel, the temperature and vapor mass fraction slowly decrease with fluctuation.  相似文献   
7.
通过对江苏省全省电子渠道用户的总量和地区分布,分析了电子渠道缴费用户的流失及消费情况,找出了目前电子渠道存在的一些问题,并提出相应的策略。  相似文献   
8.
Flow field structure can largely determine the output performance of Polymer electrolyte membrane fuel cell. Excellent channel configuration accelerates electrochemical reactions in the catalytic layer, effectively avoiding flooding on the cathode side. In present study, a three-dimensional, multi-phase model of PEMFC with a 3D wave flow channel is established. CFD method is applied to optimize the geometry constructions of three-dimensional wave flow channels. The results reveal that 3D wave flow channel is overall better than straight channel in promoting reactant gases transport, removing liquid water accumulated in microporous layer and avoiding thermal stress concentration in the membrane. Moreover, results show the optimal flow channel minimum depth and wave length of the 3D wave flow channel are 0.45 mm and 2 mm, respectively. Due to the periodic geometric characteristics of the wave channel, the convective mass transfer is introduced, improving gas flow rate in through-plane direction. Furthermore, when the cell output voltage is 0.4 V, the current density in the novel channel is 23.8% higher than that of conventional channel.  相似文献   
9.
CRAFT is a tweakable block cipher introduced in 2019 that aims to provide strong protection against differential fault analysis. In this paper, we show that CRAFT is vulnerable to side-channel cube attacks. We apply side-channel cube attacks to CRAFT with the Hamming weight leakage assumption. We found that the first half of the secret key can be recovered from the Hamming weight leakage after the first round. Next, using the recovered key bits, we continue our attack to recover the second half of the secret key. We show that the set of equations that are solvable varies depending on the value of the key bits. Our result shows that 99.90% of the key space can be fully recovered within a practical time.  相似文献   
10.
Keystroke dynamics is a viable behavioral biometric technique for identity verification based on users’ keyboard interaction traits. Keystroke dynamics can help prevent credentials from being abused in case of theft or leakage. But what happens if the keystroke events are eavesdropped and being replayed? Attackers that intercept keystroke dynamics authentication sessions of benign users can easily replay them from other sources unchanged or with minor changes and gain illegitimate privileges. Hence, even with its major security advantages, keystroke dynamics can still expose authentication mechanisms to replay attacks. Although replay attack is one of the oldest techniques to manipulate authentication systems, keystroke dynamics does not help preventing it. We suggest a new protocol for dynamics exchange based on choosing a subset of real and fake information snippets shared between the client and service providers to lure potential attackers. We evaluated our method on four state-of-the-art keystroke dynamics algorithms and three publicly available datasets and showed that we can dramatically reduce the possibility of replay attacks while preserving highly accurate user verification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号