首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   2篇
  自动化技术   2篇
  2019年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
短文本分类是互联网文本数据处理中的关键任务之一.长短时记忆网络LSTM(long short-term memory)和卷积神经网络CNN(convolutional neural network)是广泛应用于短文本分类任务的两种深度学习模型.在计算机视觉和语音识别领域的深度学习研究表明,深层次的神经网络模型具有较好的表达数据特征的能力.受此启发,面向文本深度学习分类问题,提出基于3层LSTM和CNN网络结构的ResLCNN(residual-LSTM-CNN)深度学习模型.该模型有效结合LSTM获取文本序列数据的长距离依赖特征和CNN通过卷积操作获取句子局部特征的优势,同时借鉴残差模型理论,在第1层LSTM层与CNN层之间加入恒等映射,构建残差层,缓解深层模型梯度消失问题.为了探究深层短文本分类中ResLCNN模型的文本分类能力,在多种数据集上将其与LSTM、CNN及其组合模型进行对比实验.结果表明,相比于单层LSTM与CNN组合模型,ResLCNN深层模型在MR、SST-2和SST-5数据集上分别提高了1.0%、0.5%、0.47%的准确率,取得了更好的分类效果.  相似文献
2.
王文琦  汪润  王丽娜  唐奔宵 《软件学报》2019,30(8):2415-2427
研究表明,在深度神经网络(DNN)的输入中添加小的扰动信息,能够使得DNN出现误判,这种攻击被称为对抗样本攻击.而对抗样本攻击也存在于基于DNN的中文文本的情感倾向性检测中,因此提出了一种面向中文文本的对抗样本生成方法WordHanding.该方法设计了新的词语重要性计算算法,并用同音词替换以生成对抗样本,用于在黑盒情况下实施对抗样本攻击.采用真实的数据集(京东购物评论和携程酒店评论),在长短记忆网络(LSTM)和卷积神经网络(CNN)这两种DNN模型上验证该方法的有效性.实验结果表明,生成的对抗样本能够很好地误导中文文本的倾向性检测系统.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号