首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  完全免费   36篇
  自动化技术   42篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   13篇
  2016年   6篇
  2015年   4篇
  2014年   2篇
排序方式: 共有42条查询结果,搜索用时 109 毫秒
1.
基于改进对比散度的GRBM语音识别   总被引:1,自引:0,他引:1  
对比散度作为训练受限波尔兹曼机模型的主流技术之一,在实验训练中具有较好的测试效果。通过结合指数平均数指标算法和并行回火的思想,提出一种改进对比散度的训练算法,包括模型参数的更新和样本数据的采样,并将改进后的训练算法应用于高斯伯努利受限玻尔兹曼机( GRBM)中训练语音识别模型参数。在TI-Digits数字语音训练和数字测试数据库上的实验结果表明,采用改进的对比散度训练的GRBM明显优于传统的模型训练算法,语音识别率能够达到80%左右,最高提升7%左右,而且应用改进算法训练的其他GRBM对比模型的语音识别率也都有所提高,具有较好的识别性能。  相似文献
2.
基于深度学习的作曲家分类问题   总被引:1,自引:0,他引:1  
在音乐信息检索领域,作曲家分类是一个十分重要的问题,这一问题的目标是通过音频数据来识别相应的作曲家信息.传统的分类算法都是通过提取复杂的特征来进行分类的,而深层神经网络在特征学习上具有比较强的能力,因此提出用深层神经网络来解决这一问题.为了结合不同深层神经网络模型的优点,设计了一种混合模型,该模型基于深度置信网络(deep belief network,DBN)和级联去噪自编码器(stacked denoising autoencoder,SDA),可以较好地解决作曲家分类问题.实验表明,该模型取得了76.26%的正确率,这一结果比单纯用某一种模型搭建的深层神经网络以及支持向量机要好.和图像数据类似,人脑在提取音乐特征也是分层的,每一层对信号的处理不一样,因此混合模型在解决作曲家分类问题上具有一定的优势.  相似文献
3.
深度学习研究与进展   总被引:1,自引:0,他引:1       下载免费PDF全文
深度学习是机器学习领域一个新兴的研究方向,它通过模仿人脑结构,实现对复杂输入数据的高效处理,智能地学习不同的知识,而且能够有效地解决多类复杂的智能问题。近年来,随着深度学习高效学习算法的出现,机器学习界掀起了研究深度学习理论及应用的热潮。实践表明,深度学习是一种高效的特征提取方法,它能够提取数据中更加抽象的特征,实现对数据更本质的刻画,同时深层模型具有更强的建模和推广能力。鉴于深度学习的优点及其广泛应用,对深度学习进行了较为系统的介绍,详细阐述了其产生背景、理论依据、典型的深度学习模型、具有代表性的快速学习算法、最新进展及实践应用,最后探讨了深度学习未来值得研究的方向。  相似文献
4.
针对深度神经网络中常用的激活函数具有非线性和计算复杂度高的特点,提出使用正线性函数代替常用非线性函数作为深度神经网络的激活函数。基于正线性激活函数建立的深度神经网络模型计算复杂度低,能得到稀疏表示,与人类大脑信息感知具有一致性。通过图像分类任务验证了正线性激活函数在深度神经网络中应用的有效性。  相似文献
5.
为了解决语音识别中深层神经网络的说话人与环境自适应问题,本文从语音信号中的说话人与环境因素的固有特点出发,提出了使用长时特征的自适应方案:首先基于高斯混合模型,建立说话人-环境联合补偿模型,对说话人与环境参数进行估计,将此参数作为长时特征;然后,将估计出来长时特征与短时特征一起送入深层神经网络,进行训练。Aurora4实验表明,这一方案可以有效地对说话人与环境因素进行分解,并提升自适应效果。  相似文献
6.
深度神经网络(Deep neural networks,DNNs)依靠其良好的特征提取能力,在语音增强任务中得到了广泛应用。为进一步提高深度神经网络的语音增强效果,提出一种将深度神经网络和约束维纳滤波联合训练优化的新型网络结构。该网络首先对带噪语音幅度谱进行训练并分别得到纯净语音和噪声的幅度谱估计,然后利用语音和噪声的幅度谱估计计算得到一个约束维纳增益函数,最后利用约束维纳增益函数从带噪语音幅度谱中估计出增强语音幅度谱作为网络的训练输出。对不同信噪比下的20种噪声进行的仿真实验表明,无论噪声类型是否在网络的训练集中出现,本文方法都能够在有效去除噪声的同时保持较小的语音失真,增强效果明显优于DNN及NMF增强方法。  相似文献
7.
针对行人再识别精度低的难题进行研究,提出了一种新的基于分块匹配的行人再识别方法。首先,引入带人体结构信息的人体DPM模型对行人外观进行分割,得到的带语义信息的身体部件作为匹配识别的基本单元;其次,基于深度神经网络模型提取各部件的深度特征作为匹配依据;再次,基于余弦距离判断各身体部件与目标行人对应部件的相似性;最后,融合所有身体部件的识别结果得到最终的再识别结果。实验结果表明,跟已有方法相比,本文方法具有更好的鲁棒性,在识别精度上有较明显的优势。  相似文献
8.
针对神经网络分类算法中节点函数不可导,分类精度不够高等问题,提出了一种基于粒子群优化(PSO)算法的深度神经网络分类算法.使用深度学习中的自动编码机,结合PSO算法优化权值,利用自动编码机对输入样本数据进行编解码,为提高网络分类精度,以编码机本身的误差函数和Softmax分类器的代价函数加权求和共同作为PSO算法的评价函数,使编码后的数据更加适应分类器.实验结果证明:与其他传统的神经网络相比,在邮件分类问题上,此分类算法有更高的分类精度.  相似文献
9.
Advances in deep learning over the last decade have led to a flurry of research in the application of deep artificial neural networks to robotic systems, with at least 30 papers published on the subject between 2014 and the present. This review discusses the applications, benefits, and limitations of deep learning vis-à-vis physical robotic systems, using contemporary research as exemplars. It is intended to communicate recent advances to the wider robotics community and inspire additional interest in and application of deep learning in robotics.  相似文献
10.
Recent advances in the field of computer vision can be attributed to the emergence of deep learning techniques, in particular convolutional neural networks. Neural networks, partially inspired by the brain's visual cortex, enable a computer to “learn” the most important features of the images it is shown in relation to a specific, specified task. Given sufficient data and time, (deep) convolutional neural networks offer more easily designed, more generalizable, and significantly more accurate end‐to‐end systems than is possible with previously employed computer vision techniques. This review paper seeks to provide an overview of deep learning in the field of computer vision with an emphasis on recent progress in tasks involving 3D visual data. Through a backdrop of the mammalian visual processing system, we hope to also provide inspiration for future advances in automated visual processing.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号