首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21423篇
  免费   2202篇
  国内免费   1245篇
电工技术   3551篇
技术理论   5篇
综合类   2312篇
化学工业   2086篇
金属工艺   669篇
机械仪表   1636篇
建筑科学   1732篇
矿业工程   660篇
能源动力   981篇
轻工业   636篇
水利工程   494篇
石油天然气   445篇
武器工业   190篇
无线电   2178篇
一般工业技术   2383篇
冶金工业   1172篇
原子能技术   182篇
自动化技术   3558篇
  2024年   30篇
  2023年   313篇
  2022年   413篇
  2021年   583篇
  2020年   632篇
  2019年   618篇
  2018年   584篇
  2017年   726篇
  2016年   802篇
  2015年   896篇
  2014年   1270篇
  2013年   1427篇
  2012年   1604篇
  2011年   1782篇
  2010年   1233篇
  2009年   1298篇
  2008年   1343篇
  2007年   1584篇
  2006年   1385篇
  2005年   1078篇
  2004年   890篇
  2003年   812篇
  2002年   648篇
  2001年   526篇
  2000年   426篇
  1999年   321篇
  1998年   276篇
  1997年   263篇
  1996年   218篇
  1995年   181篇
  1994年   142篇
  1993年   106篇
  1992年   99篇
  1991年   55篇
  1990年   55篇
  1989年   47篇
  1988年   31篇
  1987年   20篇
  1986年   19篇
  1985年   12篇
  1984年   12篇
  1983年   14篇
  1982年   13篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1960年   6篇
  1959年   5篇
  1957年   8篇
  1955年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Novel inks were formulated by dissolving polycaprolactone (PCL), a hydrophobic polymer, in organic solvent systems; polyethylene oxide (PEO) was incorporated to extend the range of hydrophilicity of the system. Hydroxyapatite (HAp) with a weight ratio of 55–85% was added to the polymer-based solution to mimic the material composition of natural bone tissue. The direct ink writing (DIW) technique was applied to extrude the formulated inks to fabricate the predesigned tissue scaffold structures; the influence of HAp concentration was investigated. The results indicate that in comparison to other inks containing HAp (55%, 75%, and 85%w/w), the ink containing 65% w/w HAp had faster ink recovery behavior; the fabricated scaffold had a rougher surface as well as better mechanical properties and wettability. It is noted that the 65% w/w HAp concentration is similar to the inorganic composition of natural bone tissue. The elastic modulus values of PCL/PEO/HAp scaffolds were in the range of 4–12 MPa; the values were dependent on the HAp concentration. Furthermore, vancomycin as a model drug was successfully encapsulated in the PCL/PEO/HAp composite scaffold for drug release applications. This paper presents novel drug-loaded PCL/PEO/HAp inks for 3D scaffold fabrication using the DIW printing technique for potential bone scaffold applications.  相似文献   
2.
3.
With the recent advances of direct injection (DI) technology, introducing hydrogen into the combustion chamber through DI is being considered as a viable approach to circumvent backfire and pre-ignition encountered in early generations of hydrogen engines. As part of a broader vision to develop a robust numerical model to study hydrogen spark ignition (SI) combustion in internal combustion (IC) engines, the present numerical investigation focuses on mixture preparation in a hydrogen DI SI engine. This study is carried out with a single hole injector with gaseous hydrogen injected at 100 bar injection pressure. Simulations are carried out for high and low tumble configurations and validated against optical data acquired from planar laser induced fluorescence (PLIF) measurements. Varying mesh configurations are investigated for the impact on in-cylinder mixture distribution. A particular emphasis is placed on the effect of nozzle geometry and mesh orientation near the wall. Overall, the computational model is found to predict the mixture distribution in the combustion cylinder reasonably well. The results showed that the alignment of mesh with the flow direction is important to achieve good agreement between numerical analysis and optical measurement data.  相似文献   
4.
Direct allorecognition is the earliest and most potent immune response against a kidney allograft. Currently, it is thought that passenger donor professional antigen-presenting cells (APCs) are responsible. Further, many studies support that graft ischemia-reperfusion injury increases the probability of acute rejection. We evaluated the possible role of primary human proximal renal tubular epithelial cells (RPTECs) in direct allorecognition by CD4+ T-cells and the effect of anoxia-reoxygenation. In cell culture, we detected that RPTECs express all the required molecules for CD4+ T-cell activation (HLA-DR, CD80, and ICAM-1). Anoxia-reoxygenation decreased HLA-DR and CD80 but increased ICAM-1. Following this, RPTECs were co-cultured with alloreactive CD4+ T-cells. In T-cells, zeta chain phosphorylation and c-Myc increased, indicating activation of T-cell receptor and co-stimulation signal transduction pathways, respectively. T-cell proliferation assessed with bromodeoxyuridine assay and with the marker Ki-67 increased. Previous culture of RPTECs under anoxia raised all the above parameters in T-cells. FOXP3 remained unaffected in all cases, signifying that proliferating T-cells were not differentiated towards a regulatory phenotype. Our results support that direct allorecognition may be mediated by RPTECs even in the absence of donor-derived professional APCs. Also, ischemia-reperfusion injury of the graft may enhance the above capacity of RPTECs, increasing the possibility of acute rejection.  相似文献   
5.
6.
7.
AgNbO3 lead free AFE ceramics are considered as one of the promising alternatives to energy storage applications. In the majority of studies concerning the preparation of AgNbO3 AFE ceramics, an oxygen atmosphere is required to achieve high performance, increasing the complexity of the fabrication process. Herein, a facile approach to preparing AgNbO3 ceramics in the ambient air was reported, in which the AgNbO3 ultrafine powder with stable perovskite structure was synthesized by hydrothermal method instead of the conventional ball milling process, leading to a lower temperature of phase formation and thus smaller grain size. The resulting ceramics sintered at 940 °C displayed high breakdown strength (216 kV/cm) and a recoverable energy density of 3.26 J/cm3 with efficiency of 53.5 %. Also, the high thermal stability of recoverable energy density (with minimal variation of ≤20 %) and efficiency (≤ 10 %) over 30–150℃, enables AgNbO3 ceramics achieved to be a promising candidate for energy storage applications.  相似文献   
8.
The wearable intelligent electronic product similar to electronic skin has a great application prospect. However, flexible electronic with high performance pressure sensing functions are still facing great challenges. In this paper, the highly sensitive flexible electronic skin (FES) based on the PVDF/rGO/BaTiO3 composite thin film was fabricated using the near-field electrohydrodynamic direct-writing (NFEDW) method. The PVDF/rGO/BaTiO3 composite solution was directly written on flexible substrate by the NFEDW method to fabricate FES with micro/nano fiber structure, which has the function of sensing pressure with high sensitivity and fast response. The surface morphology and microstructure were characterized by SEM, AFM, and optical microscope in detail. The fabricated FES has high sensitivity (59 kPa−1) and faster response time (130 ms). FES has been successfully applied to the detection of human motion and subtle physiological signals. The experimental results show that FES has good stability and reliability. FES can recognize human motion, and it has a broad application prospect in the field of wearable devices.  相似文献   
9.
In this study, imidazolium functionalized poly(vinyl alcohol) (PVA) was synthesized by acetalization and direct quaternization reaction. Afterwards, composite anion exchange membranes based on imidazolium‐ and quaternary ammonium‐ functionalized PVA were used for direct methanol alkaline fuel cell applications. 1H NMR and Fourier transform infrared spectroscopy data indicated that imidazole functionalized PVA was successfully synthesized. Inductively coupled plasma mass spectrometry data demonstrated that the imidazolium structure was efficiently obtained by direct quaternization of the imidazole group. Composite anion exchange membranes were fabricated by application of the functionalized PVA solution on the surface of porous polycarbonate (PC) membranes. Fuel cell related properties of all prepared membranes were investigated systematically. The imidazolium functionalized composite membrane (PVA‐Im/PC) exhibited higher ionic conductivity (7.8 mS cm?1 at 30 °C) despite a lower water uptake and ion exchange capacity value compared to that of quaternary ammonium. In addition, PVA‐Im/PC showed the lowest methanol permeation rate and the highest membrane selectivity as well as high alkaline and oxidative stability. Dynamic mechanical analysis results reveal that both composite membranes were mechanically resistant up to 107 Pa at 140 °C. The superior performance of imidazolium functionalized PVA composite membrane compared to quaternary ammonium functionalized membrane makes it a promising candidate for direct methanol alkaline fuel cell applications. © 2020 Society of Chemical Industry  相似文献   
10.
采用高精度直接数值模拟的方法对氢气非预混燃烧流场进行了精细的预测.模拟所求解的控制方程为三维可压缩的无量纲形式的Navier-Stokes方程,采用六阶精度紧致差分格式,结合基于详细化学反应和输运过程的FGM化学反应机制,利用768个处理器核、共近4.53亿网格点进行了基于CPU的大规模高效并行计算,分析氢气非预混燃烧特性,并进一步探讨了浮力对氢气燃烧流场输运特性的影响.研究发现,由于氢气燃烧过程中产生不同扩散性质的化学组分,使燃烧过程中遵循优势扩散的行为.这将影响流场的输运特性和火焰不稳定性的形成.在浮力驱动的氢气优势扩散燃烧流场中,对流是质量、动量及热量输运行为的主要影响因素,而无浮力火焰中优势扩散主导着流场的输运特性.平均统计结果表明,有浮力和无浮力的燃烧流场中都可以捕捉到逆梯度输运现象,且浮力会促进逆梯度输运行为的发生.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号