首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  完全免费   7篇
  自动化技术   21篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2006年   3篇
  2004年   1篇
  2003年   2篇
排序方式: 共有21条查询结果,搜索用时 46 毫秒
1.
This paper presents a novel face detection method by applying discriminating feature analysis (DFA) and support vector machine (SVM). The novelty of our DFA-SVM method comes from the integration of DFA, face class modeling, and SVM for face detection. First, DFA derives a discriminating feature vector by combining the input image, its 1-D Haar wavelet representation, and its amplitude projections. While the Haar wavelets produce an effective representation for object detection, the amplitude projections capture the vertical symmetric distributions and the horizontal characteristics of human face images. Second, face class modeling estimates the probability density function of the face class and defines a distribution-based measure for face and nonface classification. The distribution-based measure thus separates the input patterns into three classes: the face class (patterns close to the face class), the nonface class (patterns far away from the face class), and the undecided class (patterns neither close to nor far away from the face class). Finally, SVM together with the distribution-based measure classifies the patterns in the undecided class into either the face class or the nonface class. Experiments using images from the MIT-CMU test sets demonstrate the feasibility of our new face detection method. In particular, when using 92 images (containing 282 faces) from the MIT-CMU test sets, our DFA-SVM method achieves 98.2% correct face detection rate with two false detections.  相似文献
2.
Two-dimensional (2D) discrimination analysis using methods such as 2D PCA and Image LDA is of interest in face recognition because it extracts discriminative features faster than one-dimensional (1D) discrimination analysis. However, existing 2D methods generally use more discriminative features and take longer to test than 1D methods. 2D PCA in particular cannot make full use of the Fisher discriminant criterion. Image LDA also has drawbacks in that it cannot perform 2D principal component analysis and discards components with poor discriminative capabilities. In addition, existing 2D methods cannot provide an automatic strategy to choose 2D principal components or discriminant vectors. In this paper, we propose 2D Fisherface, a novel discrimination approach that combines the two-stage “PCA+LDA” strategy and 2D discrimination techniques. It can extract face discriminative features by automatically selecting two-dimensional principal components and discriminant vectors. Using the AR database as the test data, it is shown that the proposed approach is faster and more effective than several representative 1D and 2D discrimination methods.  相似文献
3.
研究了人脸检测的贝叶斯特征判别法,该方法包括三个部分:原始图像的特征判别分析、人脸区和其它区的统计建模以及贝叶斯分类器。特征分析包括一维Harr小波变换和幅度投影,后者可以获取人脸图像垂直方向对称分布和水平方向特征。统计建模将人脸部分看作多维正态分布,估算其条件概率密度函数(PDF)。最后使用贝叶斯分类器检测人脸。该方法具有很好的外推能力。  相似文献
4.
Classification of real-time X-ray images of pistachio nuts is discussed. The goal is to reduce the percentage of infested nuts while not rejecting more than a few percent of the good nuts. Radial basis function (RBF) neural network classifiers are emphasized. New training procedures are developed that allow samples such as those that are near decision boundaries to be treated differently from other samples. New clustering methods and new cluster classes are advanced to select and separately control various RBF parameters. These advancements are shown to be of use in this application.  相似文献
5.
该文对最佳鉴别特征的最佳维数问题进行了详细的讨论.文章首先对最佳维数问题进行了界定,然后指出了两种最佳特征维数为c-1维的情况即以某些基于矩的可分性判据(准则函数)为优化目标的最优特征和以某些特殊的分类器错误率为优化目标的最优特征.最后该文运用方差分析法对最佳鉴别特征进行特征选择使之代入最小距离分类器后识别率最大.  相似文献
6.
构造了一个彩色图片的正面人脸检测系统。首先利用肤色在YCbCr空间中沿Y方向的集中分布特性构建肤色信息库,根据该信息库在图像中检测出肤色区域;然后在肤色区域利用贝叶斯特征判别方法进行正面多尺度人脸检测。另外,定义了一些启发式搜索规则,有效地加快了人脸目标的搜索速度。实验证明, 用较少的样本进行训练的人脸检测系统,对有复杂背景、多样化的测试集具有较好的测试效果。  相似文献
7.
现实生活中数据的分布往往是非线性且不平衡的,传统的线性鉴别方法已经很难提取有效的鉴别信息,于是文中将算法扩展到核空间,提出了基于欠采样技术的核化正交平衡类鉴别分析( KOCBD)的方法。该方法在非线性空间中使用核映射,令少样本类为特定类,在剩余样本中构建其近邻样本集,并重新进行平衡类划分,然后提取鉴别特征。为了得到更具鉴别力的特征,进一步去除特征间的冗余信息,文中为相关性大的类之间所获得的鉴别向量加上正交约束。在Coil 20和USPS数据库上的实验结果表明,KOCBD方法能够有效地解决非线性空间的类不平衡问题,识别效果有一定程度的提高。  相似文献
8.
特定类的思想是将传统的多类特征提取和识别任务转化为多个两类问题,由此产生了类不平衡问题,影响最优鉴别特征的提取。为了解决该问题,文中提出了一种主动学习平衡类鉴别分析(ALCBD)方法。对于每个特定类,ALCBD从其对应的大类中选取它的部分近邻样本构成特定类的近邻样本集,接着将这个近邻样本集划分成与特定类相同样本数的多个子集,然后根据主动学习的思想挑选最优子集与特定类结合成为新样本集,最后用传统的线性鉴别分析(LDA)方法得到鉴别向量。基于USPS和Honda/UCSD数据库的实验表明ALCBD方法能够有效地解决类不平衡问题,并改善了识别性能。  相似文献
9.
传统的统计不相关鉴别分析方法使用样本的均值来估计期望,计算出总体散度矩阵。这些方法在数据不满足高斯分布的情况下会出现大的偏差,影响最优鉴别特征的提取。为了解决该问题,文中结合二维鉴别分析的思想,分别提出了基于局部的二维统计不相关鉴别变换(L2DUDT)方法和基于全局加权的二维统计不相关鉴别变换(WG2DUDT)方法。L2DUDT通过用样本的近邻中心来定义每个样本的期望,而WG2DUDT用样本间的欧几里得距离加权来定义期望。基于AR和FERET人脸数据库的实验表明,文中提出的方法与一些相关方法相比,有效地提高了识别性能。  相似文献
10.
脑电图(EEG)信号的研究是诊断脑疾患的重要手段。以癫痫脑电为例,针对癫痫发作过程的复杂性,对其演化过程进行研究。利用本征正交分解(POD)对EEG信号实行特征压缩,选取能够反映EEG脑电病理特征的多个变量,通过改进的Fisher判别方法判别分解后的信号数据,以最终确定EEG信号动态演化过程的关键点。实验结果表明,将POD分解与Fisher判别方法相结合,不仅能减少数据分析的工作量,而且能够有效判别分析EEG信号动态演化过程。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号