首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   7篇
  自动化技术   10篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 93 毫秒
1
1.
领域适应学习是一种新颖的解决先验信息缺少的模式分类问题的有效方法, 最大化地缩小领域间样本分布差是领域适应学习成功的关键因素之一,而仅考虑领域间分布均值差最小化, 使得在具体领域适应学习问题上存在一定的局限性.对此,在某个再生核Hilbert空间, 在充分考虑领域间分布的均值差和散度差最小化的基础上,基于结构风险最小化模型, 提出一种领域适应核支持向量学习机(Kernel support vector machine for domain adaptation, DAKSVM)及其最小平方范式,人造和实际数据集实验结果显示,所提方法具有优化或可比较的模式分类性能.  相似文献
2.
3.
Domain adaptation learning(DAL) methods have shown promising results by utilizing labeled samples from the source(or auxiliary) domain(s) to learn a robust classifier for the target domain which has a few or even no labeled samples.However,there exist several key issues which need to be addressed in the state-of-theart DAL methods such as sufficient and effective distribution discrepancy metric learning,effective kernel space learning,and multiple source domains transfer learning,etc.Aiming at the mentioned-above issues,in this paper,we propose a unified kernel learning framework for domain adaptation learning and its effective extension based on multiple kernel learning(MKL) schema,regularized by the proposed new minimum distribution distance metric criterion which minimizes both the distribution mean discrepancy and the distribution scatter discrepancy between source and target domains,into which many existing kernel methods(like support vector machine(SVM),v-SVM,and least-square SVM) can be readily incorporated.Our framework,referred to as kernel learning for domain adaptation learning(KLDAL),simultaneously learns an optimal kernel space and a robust classifier by minimizing both the structural risk functional and the distribution discrepancy between different domains.Moreover,we extend the framework KLDAL to multiple kernel learning framework referred to as MKLDAL.Under the KLDAL or MKLDAL framework,we also propose three effective formulations called KLDAL-SVM or MKLDAL-SVM with respect to SVM and its variant μ-KLDALSVM or μ-MKLDALSVM with respect to v-SVM,and KLDAL-LSSVM or MKLDAL-LSSVM with respect to the least-square SVM,respectively.Comprehensive experiments on real-world data sets verify the outperformed or comparable effectiveness of the proposed frameworks.  相似文献
4.
Recent researches have demonstrated the importance of concept map and its versatile applications especially in e-Learning. For example, while designing adaptive learning materials, designers need to refer to the concept map of a subject domain. Moreover, concept maps can show the whole picture and core knowledge about a subject domain. Research from literature also suggests that graphical representation of domain knowledge can reduce the problems of information overload and learning disorientation for learners. However, construction of concept maps typically relied upon domain experts in the past; it is a time consuming and high cost task. Concept maps creation for emerging new domains such as e-Learning is even more challenging due to its ongoing development nature. The aim of this paper is to construct e-Learning domain concept maps from academic articles. We adopt some relevant journal articles and conference papers in e-Learning domain as data sources, and apply text-mining techniques to automatically construct concept maps for e-Learning domain. The constructed concept maps can provide a useful reference for researchers, who are new to the e-Leaning field, to study related issues, for teachers to design adaptive learning materials, and for learners to understand the whole picture of e-Learning domain knowledge.  相似文献
5.
稀疏表示因其所具有的鲁棒性,在模式分类领域逐渐得到关注.研究了一种基于稀疏保留模型的新颖领域适应学习方法,并提出一种鲁棒的稀疏标签传播领域适应学习(sparse label propagation domain adaptation learning,简称SLPDAL)算法.SLPDAL通过将目标领域数据进行稀疏重构,以实现源领域数据标签向目标领域平滑传播.具体来讲,SLPDAL算法分为3步:首先,基于领域间数据分布均值差最小化准则寻求一个优化的核空间,并将领域数据嵌入到该核空间;然后,在该嵌入核空间,基于l1-范最小化准则计算各领域数据的核稀疏重构系数;最后,通过保留领域数据间核稀疏重构系数约束,实现源领域数据标签向目标领域的传播.最后,将SLPDAL算法推广到多核学习框架,提出一个SLPDAL多核学习模型.在鲁棒人脸识别、视频概念检测和文本分类等领域适应学习任务上进行比较实验,所提出的方法取得了优于或可比较的学习性能.  相似文献
6.
陶剑文  王士同 《软件学报》2012,23(9):2297-2310
领域适应(或跨领域)学习旨在利用源领域(或辅助领域)中带标签样本来学习一种鲁棒的目标分类器,其关键问题在于如何最大化地减小领域间的分布差异.为了有效解决领域间特征分布的变化问题,提出一种三段式多核局部领域适应学习(multiple kernel local leaning-based domain adaptation,简称MKLDA)方法:1)基于最大均值差(maximum mean discrepancy,简称MMD)度量准则和结构风险最小化模型,同时,学习一个再生多核Hilbert空间和一个初始的支持向量机(support vector machine,简称SVM),对目标领域数据进行初始划分;2)在习得的多核Hilbert空间,对目标领域数据的类别信息进行局部重构学习;3)最后,利用学习获得的类别信息,在目标领域训练学习一个鲁棒的目标分类器.实验结果显示,所提方法具有优化或可比较的领域适应学习性能.  相似文献
7.
领域适应学习旨在利用源领域中带标签的样本来解决目标领域的学习问题,其关键在于如何最大化地减小领域间的分布差异,有效解决领域间数据分布的变化。对当前领域适应学习算法进行了归纳和分类,总结了每类算法的特点,分析了5个相关典型算法并比较了其性能。最后指出了领域适应学习值得进一步探索的方向。  相似文献
8.
传统的机器学习假设测试样本和训练样本来自同一概率分布. 但当前很多学习场景下训练样本和测试样本可能来自不同的概率分布. 域自 适应学习能够有效地解决训练样本和测试样本概率分布不一致的学习问题,作为 机器学习新出现的研究领域在近几年受到了广泛的关注. 鉴于域自适应学习技术 的重要性,综述了域自适应学习的研究进展. 首先概述了域自适应学习的基本问 题,并总结了近几年出现的重要的域自适应学习方法. 接着介绍了近几年提出的 较为经典的域自适应学习理论和当下域自适应学习的热门研究方向,包括样例加 权域自适应学习、特征表示域自适应学习、参数和特征分解域自适应学习和多 源域自适应学习. 然后对域自适应学习进行了相关的理论分析,讨论了高效的度 量判据,并给出了相应的误差界. 接着对当前域自适应学习在算法、模型结构和 实际应用这三个方面的研究新进展进行了综述. 最后分别探讨了域自适应学习在 特征变换和假设、训练优化、模型和数据表示、NLP 研究中存在的问题这四个方面 的有待进一步解决的问题.  相似文献
9.
皋军  黄丽莉  孙长银 《自动化学报》2013,39(7):1037-1052
最大均值差异(Maximum mean discrepancy, MMD)作为一种能有效度量源域和目标域分布差异的标准已被成功运用.然而, MMD作为一种全局度量方法一定程度上反映的是区域之间全局分布和全局结构上的差异.为此, 本文通过引入局部加权均值的方法和理论到MMD中, 提出一种具有局部保持能力的投影最大局部加权均值差异(Projected maximum local weighted mean discrepancy, PMLWD)度量,%从而一定程度上使得PMLWD更能有效度量源域和目标域中局部分块之间的分布和结构上的差异,结合传统的学习理论提出基于局部加权均值的领域适应学习框架(Local weighted mean based domain adaptation learning framework, LDAF), 在LDAF框架下, 衍生出两种领域适应学习方法: LDAF_MLC和 LDAF_SVM.最后,通过测试人工数据集、高维文本数据集和人脸数据集来表明LDAF比其他领域适应学习方法更具优势.  相似文献
10.
陶剑文  王士同 《自动化学报》2013,39(8):1295-1309
针对领域适应学习(Domain adaptation learning, DAL)问题,提出一种核分布一致局部领域适应学习机(Kernel distribution consistency based local domain adaptation classifier, KDC-LDAC),在某个通用再生核Hilbert空间(Universally reproduced kernel Hilbert space, URKHS),基于结构风险最小化模型, KDC-LDAC首先学习一个核分布一致正则化支持向量机(Support vector machine, SVM),对目标数据进行初始划分; 然后,基于核局部学习思想,对目标数据类别信息进行局部回归重构; 最后,利用学习获得的类别信息,在目标领域训练学习一个适于目标判别的分类器.人 造和实际数据集实验结果显示,所提方法具有优化或可比较的领域适应学习性能.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号