首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   3篇
  自动化技术   4篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
基于变异和动态信息素更新的蚁群优化算法   总被引:63,自引:0,他引:63       下载免费PDF全文
朱庆保  杨志军 《软件学报》2004,15(2):185-192
尽管蚁群优化算法在优化计算中已得到了很多应用,但在进行大规模优化时,其收敛时间过长仍是应用该算法的一个瓶颈.为此,提出了一种高速收敛算法.该算法采用一种新颖的动态信息素更新策略,以保证在每次搜索中,每只蚂蚁都对搜索做出贡献;同时,还采取了一种独特的变异策略,以对每次搜索的结果进行优化.计算机实验结果表明,该算法与最新的改进蚁群优化算法相比,其收敛速度提高了数十倍乃至数百倍以上.  相似文献
2.
具有路径平滑和信息动态更新的蚁群算法   总被引:1,自引:0,他引:1       下载免费PDF全文
蚁群算法具有很强的寻优能力,但仍存在搜索时间过长、易于停滞等问题。针对这些不足,提出了一种具有路径平滑和信息动态更新的蚁群算法。新算法引入了路径平滑概念,加强了对蚁群前期搜索的引导,扩大了蚁群后期搜索空间;同时,通过动态调节信息素挥发因子,使得路径间信息素浓度差异不会增长过快,有效地避免了算法陷入局部解。实验结果表明,具有路径平滑和信息动态更新的蚁群算法明显优于基本蚁群算法。  相似文献
3.
基于信息素强度的蚁群算法   总被引:1,自引:0,他引:1       下载免费PDF全文
现有的蚁群算法在选择路径的时候都是同时考虑信息素和路径长度两个因素,导致算法未能很好地模拟真实蚂蚁。为了更好地模拟现实蚂蚁的行为,提出一种新的蚁群算法。该算法在选择路径的时候只考虑信息素强度, 而在信息素强度初始化和信息素强度更新的时候考虑了路径长度这一因素,同时也给出一种动态的信息素更新方式。经实验验证这一算法可以取得较好的搜索效果,并且它的运算速度要比现有的蚁群算法快5倍以上。  相似文献
4.
本文提出了一种多线程的高速收敛蚁群算法,该算法在MMAS基础上,采用多线程来实现其蚁群算法并行机制以减少寻路时间,同时结合粒子群算法中粒子位置转移的机制,采用一种新颖的最近邻居选择策略、并进行动态信息素更新策略,以保证在每次搜索中,都能迅速向较优解靠拢.同时,还采取了一种局部变异策略,以对每次搜索的结果进行优化.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号