首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
综合类   1篇
化学工业   4篇
轻工业   4篇
无线电   1篇
一般工业技术   1篇
自动化技术   2篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2004年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
1.
    
《Journal of dairy science》2023,106(4):2551-2572
Maintaining genetic variation in a population is important for long-term genetic gain. The existence of subpopulations within a breed helps maintain genetic variation and diversity. The 20,990 genotyped animals, representing the breeding animals in the year 2014, were identified as the sires of animals born after 2010 with at least 25 progenies, and females measured for type traits within the last 2 yr of data. K-means clustering with 5 clusters (C1, C2, C3, C4, and C5) was applied to the genomic relationship matrix based on 58,990 SNP markers to stratify the selected candidates into subpopulations. The general higher inbreeding resulting from within-cluster mating than across-cluster mating suggests the successful stratification into genetically different groups. The largest cluster (C4) contained animals that were less related to each animal within and across clusters. The average fixation index was 0.03, indicating that the populations were differentiated, and allele differences across the subpopulations were not due to drift alone. Starting with the selected candidates within each cluster, a family unit was identified by tracing back through the pedigree, identifying the genotyped ancestors, and assigning them to a pseudogeneration. Each of the 5 families (F1, F2, F3, F4, and F5) was traced back for 10 generations, allowing for changes in frequency of individual SNPs over time to be observed, which we call allele frequencies change. Alternative procedures were used to identify SNPs changing in a parallel or nonparallel way across families. For example, markers that have changed the most in the whole population, markers that have changed differently across families, and genes previously identified as those that have changed in allele frequency. The genomic trajectory taken by each family involves selective sweeps, polygenic changes, hitchhiking, and epistasis. The replicate frequency spectrum was used to measure the similarity of change across families and showed that populations have changed differently. The proportion of markers that reversed direction in allele frequency change varied from 0.00 to 0.02 if the rate of change was greater than 0.02 per generation, or from 0.14 to 0.24 if the rate of change was greater than 0.005 per generation within each family. Cluster-specific SNP effects for stature were estimated using only females and applied to obtain indirect genomic predictions for males. Reranking occurs depending on SNP effects used. Additive genetic correlations between clusters show possible differences in populations. Further research is required to determine how this knowledge can be applied to maintain diversity and optimize selection decisions in the future.  相似文献   
2.
Genome-wide association studies (GWAS) involve the detection and interpretation of epistasis, which is responsible for the ‘missing heritability’ and influences common complex disease susceptibility. Many epistasis detection algorithms cannot be directly applied into GWAS as many combinations of genetic components are present in only a small amount of samples or even none at all. For a huge number of single nucleotide polymorphisms and inappropriate statistical tests, epistasis detection remains a computational and statistical challenge in genetic epidemiology. Here, we develop a novel method to identify epistatic interactions related to disease susceptibility utilizing an ant colony optimization strategy implemented by Google's MapReduce platform. We incorporate expert knowledge used to guide ants to make the best choice in the search process into the pheromone updating rule. We conduct sufficient experiments using simulated and real genome-wide data sets and experimental results demonstrate excellent performance of our algorithm compared with its competitors.  相似文献   
3.
    
Lysyl oxidase-like 2 (LOXL2) and 3 (LOXL3) are members of the lysyl oxidase family of enzymes involved in the maturation of the extracellular matrix. Both enzymes share a highly conserved catalytic domain, but it is unclear whether they perform redundant functions in vivo. In this study, we show that mice lacking Loxl3 exhibit perinatal lethality and abnormal skeletal development. Additionally, analysis of the genotype of embryos carrying double knockout of Loxl2 and Loxl3 genes suggests that both enzymes have overlapping functions during mouse development. Furthermore, we also show that ubiquitous expression of Loxl2 suppresses the lethality associated with Loxl3 knockout mice.  相似文献   
4.
    
One of the fundamental questions in biology is how the genotype regulates the phenotype. An increasing number of studies indicate that, in most cases, the effect of a genetic locus on the phenotype is context‐dependent, i.e. it is influenced by the genetic background and the environment in which the phenotype is measured. Still, the majority of the studies, in both model organisms and humans, that map the genetic regulation of phenotypic variation in complex traits primarily identify additive loci with independent effects. This does not reflect an absence of the contribution of genetic interactions to phenotypic variation, but instead is a consequence of the technical limitations in mapping gene–gene interactions (GGI) and gene–environment interactions (GEI). Yeast, with its detailed molecular understanding, diverse population genomics and ease of genetic manipulation, is a unique and powerful resource to study the contributions of GGI and GEI in the regulation of phenotypic variation. Here we review studies in yeast that have identified GGI and GEI that regulate phenotypic variation, and discuss the contribution of these findings in explaining missing heritability of complex traits, and how observations from these GGI and GEI studies enhance our understanding of the mechanisms underlying genetic robustness and adaptability that shape the architecture of the genotype–phenotype map.  相似文献   
5.
    
Cucurbits powdery mildew (CPM) is one of the main limiting factors of melon cultivation worldwide. Resistance to races 1, 2, and 5 has been reported in the African accession TGR-1551, whose resistance is controlled by a dominant–recessive epistasis. The dominant and recessive quantitative trail loci (QTL) have previously been located in chromosomes 5 and 12, respectively. We used several densely genotyped BC3 families derived from the cross between TGR-1551 and the susceptible cultivar ‘Bola de Oro’ to finely map these resistance regions. The further phenotyping and genotyping of the selected BC5, BC5S1, BC5S2, BC4S1, BC4xPS, and (BC4xPS) S1 offspring allowed for the narrowing of the candidate intervals to a 250 and 381 kb region in chromosomes 5 and 12, respectively. Moreover, the temperature effect over the resistance provided by the dominant gene has been confirmed. High resolution melting markers (HRM) were tightly linked to both resistance regions and will be useful in marker-assisted selection programs. Candidate R genes with variants between parents that caused a potential modifier impact on the protein function were identified within both intervals. These candidate genes provide targets for future functional analyses to better understand the resistance to powdery mildew in melons.  相似文献   
6.
针对基因关联测度法的本质及意义进行了详细的理论剖析和实证研究.首先分析了反映遗传算法基因关联程度的标准化的基因关联方差与基因关联相关系数,进一步归纳出两个基本定理,并给予了严格的数学证明.最后用一些初等函数及NNK-模型对这一方法进行了实证分析,实验结果表明,对于困难问题该方法能够给予准确的判别,而对于某些较为容易的问题可能产生误判.  相似文献   
7.
By exploiting an analogy between population genetics and statistical mechanics, we study the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. This requires us to track only four macroscopic variables, instead of the distribution of all the allele frequencies that influence the trait. These macroscopic variables are the expectations of: the trait mean and its square, the genetic variance, and of a measure of heterozygosity, and are derived from a generating function that is in turn derived by maximizing an entropy measure. These four macroscopics are enough to accurately describe the dynamics of the trait mean and of its genetic variance (and in principle of any other quantity). Unlike previous approaches that were based on an infinite series of moments or cumulants, which had to be truncated arbitrarily, our calculations provide a well-defined approximation procedure. We apply the framework to abrupt and gradual changes in the optimum, as well as to changes in the strength of stabilizing selection. Our approximations are surprisingly accurate, even for systems with as few as five loci. We find that when the effects of drift are included, the expected genetic variance is hardly altered by directional selection, even though it fluctuates in any particular instance. We also find hysteresis, showing that even after averaging over the microscopic variables, the macroscopic trajectories retain a memory of the underlying genetic states.  相似文献   
8.
    
Machine learning (ML) has pervaded most areas of protein engineering, including stability and stereoselectivity. Using limonene epoxide hydrolase as the model enzyme and innov'SAR as the ML platform, comprising a digital signal process, we achieved high protein robustness that can resist unfolding with concomitant detrimental aggregation. Fourier transform (FT) allows us to take into account the order of the protein sequence and the nonlinear interactions between positions, and thus to grasp epistatic phenomena. The innov'SAR approach is interpolative, extrapolative and makes outside-the-box, predictions not found in other state-of-the-art ML or deep learning approaches. Equally significant is the finding that our approach to ML in the present context, flanked by advanced molecular dynamics simulations, uncovers the connection between epistatic mutational interactions and protein robustness.  相似文献   
9.
    
Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum (Schwabe), is a destructive disease worldwide, reducing wheat yield and quality. To accelerate the improvement of scab tolerance in wheat, we assessed the International Triticeae Mapping Initiative mapping population (ITMI/MP) for Type I and II resistance against a wide population of Argentinean isolates of F. graminearum. We discovered a total of 27 additive QTLs on ten different (2A, 2D, 3B, 3D, 4B, 4D, 5A, 5B, 5D and 6D) wheat chromosomes for Type I and Type II resistances explaining a maximum of 15.99% variation. Another four and two QTLs for thousand kernel weight in control and for Type II resistance, respectively, involved five different chromosomes (1B, 2D, 6A, 6D and 7D). Furthermore, three, three and five QTLs for kernel weight per spike in control, for Type I resistance and for Type II resistance, correspondingly, involved ten chromosomes (2A, 2D, 3B, 4A, 5A, 5B, 6B, 7A, 7B, 7D). We were also able to detect five and two epistasis pairs of QTLs for Type I and Type II resistance, respectively, in addition to additive QTLs that evidenced that FHB resistance in wheat is controlled by a complex network of additive and epistasis QTLs.  相似文献   
10.
         下载免费PDF全文
Genetic variability in the base population plays an important role in crop-breeding program. A comprehensive assessment on the quantitative signs of white lupin genotypes was performed to be included in the selection process. Two limits of the environment were applied, i.e., dense and sparse sowing. Positive true heterosis was established in PI533704×Zuter and PI533704×Lucky801 crosses by using the traits of the weight of nodules and fresh root mass weight at both limits of the environment. In more favorable growing conditions, the number and weight of nodules, as well as fresh aboveground mass weight had greater influence on the inheritance of epistatic gene interactions. In the case of dense sowing, the dominant gene actions for the weight of seeds were found more significant. With a high coefficient of inheritance in both environments, the hybrids of PI533704×Zuter and Lucky801×PI533704 were characterized by number and weight of nodules, Zuter×PI533704 by fresh root and aboveground mass weight, and almost all hybrids by seed weight per plant. The assessment of the initial material makes it highly likely to speed up the process of creating new varieties of white lupin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号