首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  完全免费   7篇
  自动化技术   12篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2013年   1篇
排序方式: 共有12条查询结果,搜索用时 109 毫秒
1.
This paper presents an estimation and compensation of state‐dependent nonlinearity for a modified repetitive control system. It is based on the equivalent‐input‐disturbance (EID) approach. The nonlinearity is estimated by an EID estimator and compensated by incorporation of the estimate into the repetitive control input. A two‐dimensional model of the EID‐based modified repetitive control system is established that enables the preferential adjustment of control and learning actions by means of 2 tuning parameters. The singular‐value‐decomposition technique and Lyapunov stability theory are used to derive a linear‐matrix‐inequality–based asymptotic stability condition. Exploiting the stability condition and an overall performance evaluation index, a design algorithm is developed. Simulation results for the tracking control of a chuck‐workpiece system show that the method not only compensates state‐dependent nonlinearity but also improves the tracking performance for the periodic reference input, thereby demonstrating the validity of the method.  相似文献
2.
This paper is concerned with the observer‐based output tracking problem for a class of linear switched stochastic systems with time delay and disturbance by using repetitive control approach. More precisely, a two‐dimensional hybrid model is incorporated to obtain and optimize the repetitive controller. In particular, the repetitive controller is used to improve the tracking performance through its continuous learning actions. In addition, an equivalent‐input‐disturbance estimator is incorporated into the repetitive control design approach to reduce the effect of the external disturbances. The main aim of the control design is to track the periodic reference signal with the measured output of the system under consideration even in the presence of an unknown bounded disturbance. By constructing a suitable Lyapunov‐Krasovskii functional and using average dwell time approach and Jensen inequality, sufficient conditions are obtained in terms of linear matrix inequalities to guarantee the mean‐square exponential stability of the considered system. Eventually, a numerical example is provided to demonstrate the effectiveness of the developed method.  相似文献
3.
Sintering plays a key role in generating blast furnace burden in metallurgical processes. The continuous production and stable quality of sintering significantly depends on the stable and precise control of sintering ignition, which, however, is achieved through an input time delay system, and suffers from different and unknown disturbances. To reject disturbances and enhance the control precision of ignition temperature, this paper introduces a modified equivalent input disturbance (EID)‐based disturbance compensation that is suitable for controlling sintering ignition. First, the periodic properties of disturbances induced by gas pressure fluctuations are obtained based on spectral density decomposition. Second, to obtain the dynamics of sintering ignition, an iterative subspace modeling method is developed, which estimates not only the model parameters but also the length of time delay. By considering the periodic property, a control structure of sintering ignition based on the modified EID‐based compensation is proposed, in which an additional time‐delay element is designed to make the phase difference between EID estimation and real disturbance close to zero. Finally, the validity of the proposed method is verified by a simulation.  相似文献
4.
This paper presents a disturbance rejection method for an affine nonlinear system. The control system is constructed based on the equivalent‐input‐disturbance (EID) approach. An affine nonlinear state observer is used to reconstruct the state of the affine nonlinear system and to estimate an EID. The well‐known differential mean value theorem enables us to describe the closed‐loop system in the state space as a linear‐parameter‐varying system. This makes it easy to derive sufficient conditions of global uniform ultimate boundedness in term of linear matrix inequalities (LMIs) by using a Lyapunov function and convexity theory. Controllers are designed based on the LMIs. A numerical example is used to illustrate the design of the control system. And a comparison between the EID‐based control and the sliding‐mode control demonstrates the effectiveness and advantages of the EID‐based control method.  相似文献
5.
A new configuration of a modified repetitive‐control system has been devised for a class of strictly proper plants that suppresses exogenous disturbances and uncertainties in the dynamics of the plant. It extends the applicability of the control system. The system consists of four parts: a two‐dimensional augmented model of the plant, which takes into account the difference in characteristics between continuous control and discrete learning in repetitive control; an equivalent‐input‐disturbance estimator; a state observer; and a state‐feedback controller. A robust‐stability condition expressed in terms of a linear matrix equality is used to determine the gains of the observer and the controller. Finally, a comparison of our method with repetitive control based on linear active disturbance rejection control (LADRC) shows how effective our method is and that it is superior to LADRC‐based repetitive control.  相似文献
6.
本文针对系统不确定性和外部干扰引起的磁悬浮球系统控制性能下降的问题, 提出了一种基于等价输入 干扰滑模观测器的模型预测控制(MPC+EIDSMO)方法. 首先将原系统转化为EID系统, 采用等价输入干扰滑模观测 器对EID系统状态变量及等价输入干扰进行估计; 然后基于状态估计值设计模型预测控制器, 并将等价输入干扰估 计值以前馈的方式补偿后得到最终的复合控制律, 实现对参考位置跟踪的快速性, 准确性以及对总扰动的鲁棒性. 值得注意的是, 与传统EID结构中的龙伯格观测器相比, 等价输入干扰滑模观测器中增加的非线性观测误差反馈项 有助于提高状态估计的快速性和精确性. 从理论上证明了该系统是全局一致毕竟有界的. 仿真和实验结果表明, 相 较于基于EID观测器的模型预测控制方法和基于龙伯格观测器的积分模型预测控制方法, 所提方法提高了磁悬浮 球系统的跟踪性能, 并且有效的抑制了系统不确定性和外部干扰.  相似文献
7.
In this paper, a robust H control problem is considered for an uncertain singular system. An active disturbance rejection method called equivalent input disturbance (EID) is used to reduce the influence of exogenous disturbances and uncertainties on the system. At the first, there exists an EID, which can produces the same effect on the system as disturbances and uncertainties do in the control channel according to the EID concept. Then, an EID estimator is constructed to estimate the influence of EID on the system. Finally, based on Lyapunov stability theory, a static output feedback‐based robust H controller combined with EID estimate is designed, guaranteeing that closed‐loop system is admissible (regular, impulse‐free, and stable) with a prescribed H performance level. Compared with traditional H control method, H control based on EID method improve the control performance of the system. A numerical example demonstrates the validity of the method.  相似文献
8.
This paper presents a disturbance‐rejection method for a modified repetitive control system with a nonlinearity. Taking advantage of stable inversion, an improved equivalent‐input‐disturbance (EID) estimator that is more relaxed for system design is developed to estimate and cancel out the influence of the disturbance and nonlinearity in the low‐frequency domain. The high‐frequency influence is filtered owning to the low‐pass nature of the linear part of the closed‐loop system. To avoid the restrictive commutative condition and choose a Lyapunov function of a more general form, a new design algorithm, which takes into account the relation between the feedback control gains and the observer and improved EID estimator gains, is developed for the nonlinear system. Furthermore, comparisons with the generalized extended‐state observer (GESO) and conventional EID methods are conducted. A clear relation between the developed estimator and the GESO is also clarified. Finally, simulations show the effectiveness and the advantage of the developed method.  相似文献
9.
This paper presents three observer/Kalman filter identification (OKID) approaches and develops a robust observer-based optimal linear quadratic digital tracker (LQDT) for the five-degree-of-freedom (five-DOF) sampled-data active magnetic bearing (AMB) system with various disturbances. The more detailed objectives are: (i) to construct both an equivalent linear time-invariant discrete-time model and its state estimator via the proposed OKID approaches for the AMB system, which might be an unknown nonlinear time-varying unstable system with both a specified rotation speed and a sampling rate; (ii) to provide an adaptive disturbance estimation scheme, which establishes an equivalent input disturbance (EID) estimator for the AMB system with unexpected disturbances; and (iii) to develop a robust observer-based optimal LQDT for the sampled-data AMB system with both a pre-specified time-varying speed and unexpected disturbances. The developed LQDT is able to recover the displacement of the rotor to the pre-specified trajectory position whenever it deviates from such trajectory.  相似文献
10.
This paper develops the repetitive control scheme for state tracking control of uncertain stochastic time-varying delay systems via equivalent-input-disturbance approach. The main purpose of this work is to design a repetitive controller to guarantee the tracking performance under the effects of unknown disturbances with bounded frequency and parameter variations. Specifically, a new set of linear matrix inequality (LMI)-based conditions is derived based on the suitable Lyapunov–Krasovskii functional theory for designing a repetitive controller which guarantees stability and desired tracking performance. More precisely, an equivalent-input-disturbance estimator is incorporated into the control design to reduce the effect of the external disturbances. Simulation results are provided to demonstrate the desired control system stability and their tracking performance. A practical stream water quality preserving system is also provided to show the effectiveness and advantage of the proposed approach.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号