首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   11篇
  自动化技术   11篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
社会化推荐系统研究   总被引:9,自引:3,他引:6       下载免费PDF全文
孟祥武  刘树栋  张玉洁  胡勋 《软件学报》2015,26(6):1356-1372
近年来,社会化推荐系统已成为推荐系统研究领域较为活跃的研究方向之一.如何利用用户社会属性信息缓解推荐系统中数据稀疏性和冷启动问题、提高推荐系统的性能,成为社会化推荐系统的主要任务.对最近几年社会化推荐系统的研究进展进行综述,对信任推理算法、推荐关键技术及其应用进展进行前沿概括、比较和分析.最后,对社会化推荐系统中有待深入研究的难点、热点及发展趋势进行展望.  相似文献
2.
广告点击率是互联网广告投放的重要依据,有效地预测广告的点击率,对于提高广告投放的效率有着至关重要的作用。在训练点击率预测模型的过程中,往往面临着广告及用户的数量巨大以及训练数据集稀疏的问题,从而导致点击率预测的准确度下降。针对这些问题提出了一种基于LDA (Latent Dirichlet Allocation)的点击率预测算法,即LDA-FMs,该算法对原有训练集进行基于主题的分割,利用分割后的子训练集分别建立不同主题下的点击率预测模型,在此基础上,利用广告属于不同主题的概率,有权重的结合每个预测模型的预测结果,进而计算广告的点击率。实验基于KDD Cup 2012-Track2的真实数据集,证明了算法的可行性与有效性。  相似文献
3.
在推荐系统中,因评分尺度差异而造成的偏差问题一直影响着协同过滤算法的预测准确性。其中针对矩阵因子分解算法中的偏差问题,本文提出一种基于高阶偏差的因子分解机算法。该算法首先按照评分偏差的现实特征对用户和项目进行划分,再将偏差类别作为辅助特征集成到因子分解机中,实现了评分预测中不同偏差用户、项目的高阶交互。在Movielens数据集上的实验结果表明,相比传统矩阵因子分解算法,本文提出的算法具有更低的预测误差,体现了其更好的推荐性能。  相似文献
4.
在电子交易中,用户通过PC端的浏览器进行交易。由于钓鱼网站等盗号方式的威胁,传统的账号密码认证方式存在着失效的风险。现有的用户网页浏览行为认证方法主要针对用户的某一方面行为进行认证。若对大量用户仅进行单方面行为的认证,则难以区分特征相似用户,会造成认证失效。基于用户浏览网页的序列行为、超链接使用行为和操作浏览器行为的多因素浏览行为特征,采用机器学习方法构建了一种认证方法。实验结果表明,在一定的误报率情况下,该方法的侦测率达到了90%以上。  相似文献
5.
丁永刚  李石君  余伟  王俊 《计算机科学》2017,44(10):182-186
传统的协同过滤推荐算法普遍存在数据稀疏问题,且仅利用单一综合评分来计算用户相似度,无法找到在多个指标上偏好相似的用户,因而影响推荐的准确度。多指标评分推荐算法力图寻找在多个指标上偏好相似的用户,但是其评价成本高,导致数据稀疏性问题更加严重。为了找到与目标用户在多个指标上偏好相似的用户,提出基于码本聚类的思想来获取用户在各指标上的评分风格信息,然后基于评分风格信息将用户和项目在各指标上进行双向聚类,最后利用因子分解机模型(Factorization Machines,FMs)基于同一簇内的用户、项目、多指标评分信息、评分风格信息进行推荐。实验结果表明,与传统的协同过滤算法和其他多指标推荐方法相比,基于多指标评分信息的因子分解机推荐算法能够在一定程度上缓解数据稀疏问题,提高推荐的准确度。  相似文献
6.
分解机模型已经被成功应用于上下文推荐系统。在分解机模型的学习算法中,交替最小二乘法是一种固定其他参数只求单一参数最优值的学习算法,其参数数目影响计算复杂度。然而当特征数目很大时,参数数目随着特征数目急剧增加,导致计算复杂度很高;即使有些参数已经达到了最优值,每次迭代仍更新所有的参数。因此,主要改进了交替最小二乘法的参数更新策略,为参数引入自适应误差指标,通过权重和参数绝对误差共同决定该参数更新与否,使得每次迭代时重点更新最近两次迭代取值变化较大的参数。这种仅更新自适应误差大于阈值的参数的策略不但减少了需要更新的参数数目,进而加快了算法收敛的速度和缩短了运行时间,而且参数权重由误差决定,又修正了误差。在Yahoo和Movielens数据集上的实验结果证明:改进的参数更新策略运行效率有明显提高。  相似文献
7.
喻飞  赵志勇  魏波 《计算机科学》2016,43(9):269-273
因子分解机(Factorization Machine,FM) 算法是一种基于矩阵分解的机器学习算法,可用于求解回归、分类和排序等问题。FM模型中的参数求解使用的是基于梯度的优化方法,然而在样本较少的情况下,该优化方法收敛速度慢,且易陷入局部最优。差分进化算法(Differential Evolution,DE)是一种启发式的全局优化算法,具有收敛速度快等特性。为提高FM模型的训练速度,利用DE计算FM模型参数,提出了DE-FM算法。在数据集Diabetes、HorseColic以及音乐分类数据集Music上的实验结果表明,改进后的基于差分进化的因子分解机算法DE-FM在训练速度和准确性上均有所提高。  相似文献
8.
李鸿超  刘建勋  曹步清  石敏 《软件学报》2018,29(11):3374-3387
如何根据用户的自然语言需求描述自动生成或推荐用于解决问题的Web API服务集合,并辅助构建Mashup是业务流程管理者和服务组合者关注的热点之一.如何提高推荐的质量是大家关注的焦点.为此,本文提出一种融合多维信息的主题自适应Web API推荐方法HDP-FM(Hierarchical Dirichlet Processes-FactorizationMachines)为Mashup的创建推荐Web APIs集合.该方法以Web API的描述文档为语料库,利用HDP模型训练每个Web API的主题分布向量.其次,利用已生成的主题模型预测每个Mashup的主题分布向量,用于相似度的计算.最后将Mashup之间的相似度,WebAPI之间的相似度,Web API的流行度和共现性作为因子分解机模型的输入,评分排序获取用于推荐的Web APIs集合.为了验证HDP-FM方法的性能,本文使用从ProgrammableWeb平台上爬取的真实数据进行多组实验,实验结果表明,HDP-FM方法在准确率,召回率,F-measureNDCG@N等方面具有较好的性能.  相似文献
9.
随着互联网以及Web服务技术的快速发展,相同功能的Web服务数量越来越多.在构建面向服务的应用时,服务质量(QoS)作为Web服务的非功能特性开始被越来越多的用户所重视.为了向用户推荐高质量的服务,首先我们需要对服务质量进行预测.现今有很多关于Web服务QoS预测的工作,这些研究大都关注在建模方法的优化上,忽视了辅助特征对于QoS预测的影响.着重分析辅助特征对于QoS预测的影响,例如服务类别和用户地理位置.为了实现此目标,基于因子分解机(Factorization Machines)设计并构建了一个统一的QoS预测架构,该架构可以灵活、方便地考虑进多个辅助特征.结合服务类别和用户地理位置这两类辅助特征,提出了一种QoS预测方法,并通过在真实数据上的实验证明了我们的方法的优越性.  相似文献
10.
传统矩阵分解方法因其算法的高可扩展性和较好的性能等特点,在预测、推荐等领域有着广泛的应用.然而大数据环境下,更多上下文因素的获取变得可能,传统矩阵分解方法缺乏对上下文信息的有效利用.在此背景下,因子分解机模型提出并流行.为了更好地把握因子分解机模型的发展脉络,促进因子分解机模型与应用相结合,针对因子分解机模型及其算法进行了综述.首先,对因子分解机模型的提出进行了溯源,介绍了从传统矩阵分解到因子分解机模型的演化过程;其次,从模型准确率和效率两方面对因子分解机模型存在的基本问题和近年来的研究进展进行了总结,然后综述了适用于因子分解机模型求解的4种代表性优化算法;最后分析了因子分解机模型目前仍存在的问题,提出了可能的解决思路,并对未来的研究方向进行了展望.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号