首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161022篇
  免费   12538篇
  国内免费   9464篇
电工技术   11183篇
技术理论   14篇
综合类   17602篇
化学工业   18239篇
金属工艺   9529篇
机械仪表   8104篇
建筑科学   10257篇
矿业工程   4123篇
能源动力   5685篇
轻工业   7380篇
水利工程   4173篇
石油天然气   9899篇
武器工业   1851篇
无线电   14622篇
一般工业技术   22257篇
冶金工业   5826篇
原子能技术   3217篇
自动化技术   29063篇
  2024年   201篇
  2023年   1403篇
  2022年   2109篇
  2021年   2729篇
  2020年   3309篇
  2019年   3006篇
  2018年   3035篇
  2017年   3539篇
  2016年   4231篇
  2015年   5012篇
  2014年   8088篇
  2013年   9280篇
  2012年   9025篇
  2011年   10222篇
  2010年   8171篇
  2009年   9594篇
  2008年   9456篇
  2007年   10465篇
  2006年   9700篇
  2005年   8196篇
  2004年   6961篇
  2003年   6479篇
  2002年   6005篇
  2001年   4633篇
  2000年   4833篇
  1999年   4399篇
  1998年   3575篇
  1997年   3336篇
  1996年   3367篇
  1995年   3386篇
  1994年   3029篇
  1993年   1947篇
  1992年   1893篇
  1991年   1335篇
  1990年   1027篇
  1989年   957篇
  1988年   819篇
  1987年   463篇
  1986年   335篇
  1985年   452篇
  1984年   501篇
  1983年   487篇
  1982年   393篇
  1981年   454篇
  1980年   311篇
  1979年   153篇
  1978年   142篇
  1977年   95篇
  1975年   69篇
  1974年   50篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The effect of dry and wet ball milling of LiFe5O8 ferrite powder on the microstructure and electromagnetic properties of ferrite ceramics was studied using XRD analysis, scanning electron microscopy, dilatometry, thermogravimetry, calorimetry, and measurement of specific magnetization and electrical resistance. The sintering temperature was 1050 °C; the sintering time was 2 h. It was found that ferrite fabricated from dry-milled powder exhibits an ordered α-LiFe5O8 phase with bulk density of 91%. Its saturation magnetization and Curie temperature are 55 emu/g and 628°С, respectively. Specific electrical resistance is 4?106 Ω cm. Wet milling in isopropyl alcohol causes formation of a disordered β-LiFe5O8 phase. Ceramics produced by this method shows higher bulk density (97%) and low porosity, and an order of magnitude lower resistivity. Its saturation magnetization and Curie temperature are 51 emu/g and 607°С, respectively.  相似文献   
2.
《Ceramics International》2021,47(24):34278-34288
Materials exhibiting colossal dielectric constant are the most sought-after materials due to their variety of applications in various electronics industries. NiFe2O4 and LaFeO3 belonging to the spinel and perovskite structures, respectively, were coupled into a nanocomposite by adapting a one-pot sol-gel synthesis. The ratio of NiFe2O4:LaFeO3 was varied and the synthesized materials were studied for their dielectric behaviors. Interestingly, among the samples studied, the nanocomposite with the ratio of 1:2 of NiFe2O4–LaFeO3 exhibited a high dielectric constant value of 10390 at a frequency of 1 kHz with a several-fold increase in conductivity. The high conductivity resulted in a high dielectric loss. The origin of such a high dielectric constant and loss have been attributed to the Maxwell-Wagner type space charge polarization arising from the microstructure that consists of large and continuous grain boundaries, and the conducting phase at the interface, respectively.  相似文献   
3.
Perfluorosulfonic acid ionomer membranes have been widely used as proton conducting membranes in various electrochemical processes such as polymer electrolyte fuel cells and water electrolysis. While their thermal stability has been studied by thermogravimetry and analysis of low molecular weight products, their decomposition mechanism is little understood. In this study a newly developed methodology of thermal desorption and pyrolysis in combination with direct analysis in real time mass spectrometry is applied for Nafion membrane. An ambient ionization source and a high-resolution time-of-flight mass spectrometer enabled unambiguous assignment of gaseous products. Thermal decomposition is initiated by side chain detachment above 350°C, which leaves carbonyls on the main chain at the locations of the side chains. Perfluoroalkanes are released above 400°C by main chain scission and their further decomposition products dominate above 500 °C. DFT calculation of reaction energies and barrier heights of model compounds support proposed decomposition reactions.  相似文献   
4.
《Ceramics International》2021,47(19):27351-27360
A series of xPbO–(45-x)CuO–55B2O3 glasses (5 ≤ x ≥ 40 mol %) were prepared by the melt-quenching technique. The X-ray diffraction (XRD) patterns of the prepared glasses are found to have amorphous structure. An extensive ultrasonic study has been made to explore the structural role of PbO and CuO in the borate network. Various elastic properties were calculated from the measured data of density and ultrasonic velocity. Ultrasonic velocity and elastic moduli revealed broad humps at about 20 mol % PbO, which are attributed to the borate anomaly. Below 20 mol % PbO, all Pb2+ ions are considered to be entering the borate network as a glass modifier. This results in the transforms the borate network from an open structure to a denser three-dimensional structure due to BO3 → BO4 conversion. Beyond 20 mol, addition of PbO results in the formation of metaborate, pyroborate, and orthoborate units with NBOs. This weakness the glass structure and decrease both ultrasonic velocity and elastic moduli. The elastic properties were predicted and quantitatively analyzed by taking into account the effect of boron coordination number on the compositional and structural parameters involved in Makishima–Mackenzie's theory, ring deformation model and bond compression model. An excellent agreement between the computed theoretical and experimental elastic moduli, micro-harness and Poisson's ratio was achieved for majority of samples.  相似文献   
5.
Forty samples of optically active falcarindiol analogues are synthesized by using the easily available C2 symmetric (R)- and (S)-1,1’-binaphth-2-ol (BINOL) in combination with Ti(OiPr)4, Zn powder and EtI. Their anticancer activities on Hccc-9810, HepG2, MDA-MB-231, Hela, MG-63 and H460 cells are assayed to elucidate their structure-activity relationships. These results showed that the falcarindiol analogue (3R,8S)- 2 i with the terminal double bond has the most potent anti-proliferation effect on Hccc-9810 cells with IC50 value of 0.46 μM. The falcarindiol analogue (3R,8S)- 2 i can induce obvious Hccc-9810 cell apoptosis in a concentration-dependent manner by Hoechst staining and flow cytometry analysis. The proposed mechanism suggests that the falcarindiol analogue (3R,8S)- 2 i increases LDH release and MDA content, and reduces the levels of SOD activity, which lead to the accumulation of oxidative stress and induce apoptosis in Hccc-9810 cells.  相似文献   
6.
Orthorhombic-structured CaIn2O4 ceramics with a space group Pca21 were synthesized via a solid-state reaction method. A high relative density (95.6 %) and excellent microwave dielectric properties (εr ~11.28, Qf = 74,200 GHz, τf ~ ?4.6 ppm/°C) were obtained when the ceramics were sintered at 1375 °C for 6 h. The dielectric properties were investigated on the basis of the Phillips–Van Vechten–Levine chemical bond theory. Results indicated that the dielectric properties were mainly determined by the InO bonds in the CaIn2O4 ceramics. These bonds contributed more (74.65 %) to the dielectric constant than the CaO bonds (25.35 %). Furthermore, the intrinsic dielectric properties of the CaIn2O4 ceramics were investigated via infrared reflectivity spectroscopy. The extrapolated microwave dielectric properties were εr ~10.12 and Qf = 112,200 GHz. Results indicated that ion polarization is the main contributor to the dielectric constant in microwave frequency ranges.  相似文献   
7.
《Ceramics International》2021,47(24):34521-34528
Aiming at the problem that power density and energy density are difficult to obtain simultaneously under low field, a novel composition (1-x)Na0·5Bi0·5TiO3-xBaZn1/3Ta2/3O3((1-x)NBT-xBZT) was designed and fabricated via solid-state methods. With the addition of BZT, the crystal lattice, structural symmetry, grain size, and dense degree were all increased proved by XRD, Raman, and Archimedes drainage method et al. Because of the enhancement of relaxor behavior, the x=0.10 sample displayed a high permittivity εr of 2871±15% and a low dielectric loss tan δ ≤ 0.025 in the wide temperature range of 60–400 oC. This ceramic also showed maximum recoverable energy density Wd (2.07 J/cm3) with high efficiency η (71.5%) under a low field of 150 kV/cm. Moreover, pulse discharge testing proved that this ceramic possessed both a significant discharge energy density WD (0.96 J/cm3) and a record high power density PD (108.54 MW/cm3). This work provided a promising material for high power and energy applications.  相似文献   
8.
The evolution of new SARS-CoV-2 variants around the globe has made the COVID-19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor-binding motif (RBM) of the receptor-binding domain (RBD) spike glycoprotein, i. e. L452R-E484Q, may play a different role in the B.1.617 (also known as G/452R.V3) variant's pathogenicity and better survival compared to the wild type. Therefore, a thorough analysis is needed to understand the impact of these mutations on binding with host receptor (RBD) and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to explore the impact of specific mutations (L452R-E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2. Our analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic-stability, residual flexibility and structural compactness. Moreover, the new variant had altered the bonding network and structural-dynamics properties significantly. MM/GBSA technique was used, which further established the binding differences between the wild type and B.1.617 variant. In conclusion, this study provides a strong impetus to develop novel drugs against the new SARS-CoV-2 variants.  相似文献   
9.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
10.
Subsurface hydrogen (H2) storage in geological formations is of growing interest for decarbonization. However, there is a knowledge gap in understanding the multiphase flow involved in this process, which can have a significant impact on the recovery performance of H2. Therefore, a full-compositional modeling study was conducted to analyze potential issues and to understand the fundamental hydrodynamic mechanisms of H2 storage. We performed a range of 2D vertical simulations at the decametre scale with a very fine cell size (0.1 m) to observe the detailed flow behaviour of H2 with carbon dioxide (CO2) as cushion gas in various flow regimes. Issues such as viscous instability, capillary bypassing, gas trapping and gravity segregation are analysed here. To generalize our calculations, we have validated and applied the scaling theory in the context of subsurface H2 storage. Since this study is focused on the hydrodynamic behaviour, three dimensionless groups, including aspect factor, capillary/viscous ratio and gravity/viscous ratio were identified to correlate recovery performance between various scales in a fixed heterogeneous system. It was found that H2 could infiltrate the cushion gas in the proximity of the injectors, meaning that CO2 is not displaced away from the injectors in a piston-like fashion. As a result, the purity of the back produced H2 is much degraded, particularly in a viscous-dominated scenario. On the other hand, the injected H2 mostly accumulates at the top forming a highly restricted mixing zone with CO2 in the gravity-dominated case. The recovery performance is therefore much improved in this case. Although the gas distribution can be significantly altered by capillary forces leading to bypassed zones, the recovery performance of H2 is hardly influenced. This is because the back-produced H2 recovery is not dependent on the sweep efficiency of the gas. H2 can be back produced following the same paths which were formed during injection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号