首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46498篇
  免费   5641篇
  国内免费   3503篇
电工技术   2969篇
综合类   4868篇
化学工业   5517篇
金属工艺   1073篇
机械仪表   3870篇
建筑科学   1574篇
矿业工程   1219篇
能源动力   1821篇
轻工业   1201篇
水利工程   802篇
石油天然气   6446篇
武器工业   982篇
无线电   6581篇
一般工业技术   3769篇
冶金工业   962篇
原子能技术   471篇
自动化技术   11517篇
  2024年   94篇
  2023年   783篇
  2022年   1180篇
  2021年   1410篇
  2020年   1554篇
  2019年   1440篇
  2018年   1276篇
  2017年   1647篇
  2016年   1824篇
  2015年   2016篇
  2014年   2814篇
  2013年   3176篇
  2012年   3416篇
  2011年   3725篇
  2010年   2717篇
  2009年   2645篇
  2008年   2631篇
  2007年   3123篇
  2006年   2761篇
  2005年   2525篇
  2004年   2043篇
  2003年   1784篇
  2002年   1510篇
  2001年   1228篇
  2000年   1038篇
  1999年   901篇
  1998年   720篇
  1997年   655篇
  1996年   532篇
  1995年   501篇
  1994年   420篇
  1993年   263篇
  1992年   239篇
  1991年   188篇
  1990年   173篇
  1989年   113篇
  1988年   84篇
  1987年   62篇
  1986年   54篇
  1985年   57篇
  1984年   72篇
  1983年   32篇
  1982年   51篇
  1981年   45篇
  1980年   31篇
  1979年   14篇
  1978年   13篇
  1977年   15篇
  1959年   11篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
针对目标估计过程需要大量人工参与、自动化程度低的问题,提出了基于数据质量评价的目标估计方法。利用目标数据质量评价方法,对不同传感器得到的目标数据质量进行科学、有效的测度和评价,并根据质量得分动态调整各数据源在目标估计过程中所占的权重,从而减少人工干预,提高目标估计效能。仿真试验结果证明了该方法的有效性。  相似文献   
2.
Classical Fourier's theory is well-known in continuum physics and thermal sciences. However, the primary drawback of this law is that it contradicts the principle of causality. To explore the thermal relaxation time characteristic, Cattaneo–Christov's theory is adopted thermally. In this regard, the features of magnetohydrodynamic (MHD) mixed convective flows of Casson fluids over an impermeable irregular sheet are revealed numerically. In addition, the resulting system of partial differential equations is altered via practical transformations into nonlinear ordinary differential equations. An advanced numerical algorithm is developed in this respect to get higher approximations for temperature and velocity fields, as well as their corresponding wall gradients. For validating our numerical code, the current outcomes are compared with the available literature results. Moreover, it is revealed that the velocity field is more prominent in the suction flow situation as compared with the injection flow case. It is also found that the Casson fluid is hastened in the case of lower yield stress. Larger values of thermal relaxation parameters create a lessening trend in the temperature distribution and its related boundary layer breadth.  相似文献   
3.
An analysis has been carried out to examine the heat and mass transfer properties of a two-dimensional incompressible electrically conducting Maxwell fluid over a stretching sheet in the existence of Soret, Dufour, and nanoparticles. In many practical scenarios, such as the polymer extrusion process, the problem presented here is crucial. The flow is examined in terms of the impacts of magnetohydrodynamics and elasticity. Brownian motion and thermophoresis are incorporated into the transport equations. Using adequate similarity variables, the governing partial differential equations and related boundary conditions are non-dimensionalized. The fourth–fifth-order Runge–Kutta–Fehlberg procedure is utilized to solve the consequent transformed ordinary differential equations. The effects of various embedded thermo-physical parameters on the fluid velocity, temperature, concentration, Nusselt number, and Sherwood number have been determined and discussed quantitatively. A comparison of a special case of our results with the one previously reported in the literature shows a very good agreement. An increase in the values of Du and Sr leads to an increase in the temperature and concentration distribution. Nusselt number estimates decrease as Nb estimations increase. Furthermore, this study leads to the study of different flows of electrically conducting fluid over a stretching sheet problem that includes the two-dimensional nonlinear boundary equations.  相似文献   
4.
A high-throughput (105.5 g/h) passive four-stage asymmetric oscillating feedback microreactor using chaotic mixing mechanism was developed to prepare aggregated Barium sulfate (BaSO4) particles of high primary nanoparticle size uniformity. Three-dimensional unsteady simulations showed that chaotic mixing could be induced by three unique secondary flows (i.e., vortex, recirculation, and oscillation), and the fluid oscillation mechanism was examined in detail. Simulations and Villermaux–Dushman experiments indicate that almost complete mixing down to molecular level can be achieved and the prepared BaSO4 nanoparticles were with narrow primary particle size distribution (PSD) having geometric standard deviation, σg, less than 1.43 when the total volumetric flow rate Qtotal was larger than 10 ml/min. By selecting Qtotal and reactant concentrations, average primary particle size can be controlled from 23 to 109 nm as determined by microscopy. An average size of 26 nm with narrow primary PSD (σg = 1.22) could be achieved at Qtotal of 160 ml/min.  相似文献   
5.
Numerical simulations are performed to investigate the real gas effects on shock/expansion fan interaction. Initial perfect gas simulations at low enthalpy capture the flow structures efficiently and outcomes are found to have excellent agreement with the analytical calculations. Furthermore, the simulations with the real gas solver for different enthalpies showed that the variation in enthalpy significantly changes the flow structures. It is observed that an increase in enthalpy leads to a decrease and increase in the postshock and postexpansion fan Mach numbers, respectively. Another important observation is the decrement in the peak pressure ratio with an increment in the enthalpy. These effects are noted to be more pronounced for Mars's environment due to the higher dependency of specific heat on temperature.  相似文献   
6.
The thermodynamics modeling of a Reiner–Philippoff-type fluid is essential because it is a complex fluid with three distinct probable modifications. This fluid model can be modified to describe a shear-thinning, Newtonian, or shear-thickening fluid under varied viscoelastic conditions. This study constructs a mathematical model that describes a boundary layer flow of a Reiner–Philippoff fluid with nonlinear radiative heat flux and temperature- and concentration-induced buoyancy force. The dynamical model follows the usual conservation laws and is reduced through a nonsimilar group of transformations. The resulting equations are solved using a spectral-based local linearization method, and the accuracy of the numerical results is validated through the grid dependence and convergence tests. Detailed analyses of the effects of specific thermophysical parameters are presented through tables and graphs. The study reveals, among other results, that the buoyancy force, solute and thermal expansion coefficients, and thermal radiation increase the overall wall drag, heat, and mass fluxes. Furthermore, the study shows that amplifying the space and temperature-dependent heat source parameters allows fluid particles to lose their cohesive force and, consequently, maximize flow and heat transfer.  相似文献   
7.
机器翻译译文质量估计(Quality Estimation,QE)是指在不需要人工参考译文的条件下,估计机器翻译系统产生的译文的质量,对机器翻译研究和应用具有很重要的价值。机器翻译译文质量估计经过最近几年的发展,取得了丰富的研究成果。该文首先介绍了机器翻译译文质量估计的背景与意义;然后详细介绍了句子级QE、单词级QE、文档级QE的具体任务目标、评价指标等内容,进一步概括了QE方法发展的三个阶段: 基于特征工程和机器学习的QE方法阶段,基于深度学习的QE方法阶段,融入预训练模型的QE方法阶段,并介绍了每一阶段中的代表性研究工作;最后分析了目前的研究现状及不足,并对未来QE方法的研究及发展方向进行了展望。  相似文献   
8.
Knowledge distillation has become a key technique for making smart and light-weight networks through model compression and transfer learning. Unlike previous methods that applied knowledge distillation to the classification task, we propose to exploit the decomposition-and-replacement based distillation scheme for depth estimation from a single RGB color image. To do this, Laplacian pyramid-based knowledge distillation is firstly presented in this paper. The key idea of the proposed method is to transfer the rich knowledge of the scene depth, which is well encoded through the teacher network, to the student network in a structured way by decomposing it into the global context and local details. This is fairly desirable for the student network to restore the depth layout more accurately with limited resources. Moreover, we also propose a new guidance concept for knowledge distillation, so-called ReplaceBlock, which replaces blocks randomly selected in the decoded feature of the student network with those of the teacher network. Our ReplaceBlock gives a smoothing effect in learning the feature distribution of the teacher network by considering the spatial contiguity in the feature space. This process is also helpful to clearly restore the depth layout without the significant computational cost. Based on various experimental results on benchmark datasets, the effectiveness of our distillation scheme for monocular depth estimation is demonstrated in details. The code and model are publicly available at : https://github.com/tjqansthd/Lap_Rep_KD_Depth.  相似文献   
9.
Many attempts have been made to improve mass transfer by reducing the size of reactors. However, such reduction will fairly quickly reach practical limitations and numerous difficulties still remain. Catalytic washcoat shape and properties may be critical design factors, but the mechanisms for their effects on mass transfer characteristics are still not fully understood. To effectively eliminate problems associated with mass transport phenomena in microstructured steam-methanol reformers, the effects of washcoat shape and properties were investigated in various situations by performing computational fluid dynamics simulations. The dependence of the solution on mass transfer characteristics was reduced to a small number of dimensionless parameters. A dimensionless mass transfer analysis was carried out in terms of the Sherwood, Schmidt, and pore Reynolds numbers. The results indicated that the rate of mass transfer is predominantly controlled by washcoat properties, and porosity and effective thermal conductivity are fundamentally important. The rate of the reforming reaction is typically controlled by kinetics at a temperature of 480 K and limited by mass transfer at a temperature of 580 K. The shape of washcoats affects the overall mass transfer characteristics, depending on the structural and thermal properties of washcoats. The shape effect is limited by heat transfer. A three-fold increase in effectiveness factor can be achieved by increasing the effective thermal conductivity of the washcoat. Design recommendations were finally made to improve transport characteristics for the systems.  相似文献   
10.
There are several methods for estimating bed shear stress in the literature, but comprehensive comparisons among them are limited and under specific conditions. This study compared these methods first on a bare smooth bed, and then for a single geobag on a rough bed in the interest of determining the stability of geobags used in riverbank protection structures. The geobag was filled with cement or sand and tested under different open channel flow conditions. The turbulent kinetic energy method appeared to best represent the local bed shear stress on the geobag when using the newly calibrated proportionality constants. The Reynolds stress method via extrapolation was relatively unaffected by changes to the geobags shape and measurement locations, suggesting this method inadequately represents the local bed shear stress. The Patel method and the universal law of the wall method failed to represent local bed shear stress in the rough bed cases due to instrument limitations and the breakdown of the law of the wall. This study highlights the impact of different methods on the bed shear stress estimation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号