首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  国内免费   11篇
  完全免费   118篇
  自动化技术   290篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   6篇
  2013年   7篇
  2012年   18篇
  2011年   22篇
  2010年   32篇
  2009年   22篇
  2008年   37篇
  2007年   24篇
  2006年   20篇
  2005年   24篇
  2004年   32篇
  2003年   13篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
排序方式: 共有290条查询结果,搜索用时 46 毫秒
1.
基于FP-Tree的最大频繁项目集挖掘及更新算法   总被引:102,自引:2,他引:100       下载免费PDF全文
宋余庆  朱玉全  孙志挥  陈耿 《软件学报》2003,14(9):1586-1592
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,之前的很多研究都是采用Apriori类的候选项目集生成-检验方法.然而,候选项目集产生的代价是很高的,尤其是在存在大量强模式和/或长模式的时候.提出了一种快速的基于频繁模式树(FP-tree)的最大频繁项目集挖掘DMFIA(discover maximum frequent itemsets algorithm)及其更新算法UMFIA(update maximum frequent itemsets algorithm).算法UMFIA将充分利用以前的挖掘结果来减少在更新的数据库中发现新的最大频繁项目集的费用.  相似文献
2.
SPADE: An Efficient Algorithm for Mining Frequent Sequences   总被引:57,自引:0,他引:57  
In this paper we present SPADE, a new algorithm for fast discovery of Sequential Patterns. The existing solutions to this problem make repeated database scans, and use complex hash structures which have poor locality. SPADE utilizes combinatorial properties to decompose the original problem into smaller sub-problems, that can be independently solved in main-memory using efficient lattice search techniques, and using simple join operations. All sequences are discovered in only three database scans. Experiments show that SPADE outperforms the best previous algorithm by a factor of two, and by an order of magnitude with some pre-processed data. It also has linear scalability with respect to the number of input-sequences, and a number of other database parameters. Finally, we discuss how the results of sequence mining can be applied in a real application domain.  相似文献
3.
基于FP-Tree有效挖掘最大频繁项集   总被引:37,自引:2,他引:35       下载免费PDF全文
最大频繁项集的挖掘过程中,在最小支持度较小的情况下,超集检测是算法的主要耗时操作.提出了最大频繁项集挖掘算法FPMFI(frequent pattern tree for maximal frequent item set)使用基于投影进行超集检测的机制,有效地缩减了超集检测的时间.另外,算法FPMFI通过删除FP子树(conditional frequent pattern tree)的冗余信息,有效地压缩了FP子树的规模,减少了遍历的开销.分析表明,算法FPMFI具有优越性.实验比较说明,在最小支持度较小时,算法FPMFI的性能优于同类算法1倍以上.  相似文献
4.
在FP-树中挖掘频繁模式而不生成条件FP-树   总被引:32,自引:1,他引:31  
FP-growth算法是目前已发表的最有效的频繁模式挖掘算法之一.然而,由于在挖掘频繁模式时需要递归地生成大量的条件FP-树,其时空效率仍然不够高.改进了FP-树结构,提出了一种基于被约束子树挖掘频繁项集的有效算法.改进的FP-树是单向的,每个结点只保留指向父结点的指针,这大约节省了三分之一的树空间.通过引入被约束子树(可以用3个很小的数组表示),算法在挖掘频繁模式时不生成条件FP-树,从而大大提高了频繁模式挖掘的时空效率.实验表明,与FP-growth算法相比,算法的挖掘速度提高了1倍以上,而所需的存储空间减少了一半.此外,随着数据库规模的增大,算法具有很好的可伸缩性.对于稠密数据集,算法也具有良好的性能.  相似文献
5.
快速挖掘全局频繁项目集   总被引:32,自引:1,他引:31  
分布式环境中,全局频繁项目集的挖掘是数据挖掘中最重要的研究课题之一.传统的全局频繁项目集挖掘算法采用Apriori算法框架,须多遍扫描数据库并产生大量的候选项目集,且通过传送局部频繁项目集求全局频繁项目集的网络通信代价高.为此,提出了一种分布数据库的全局频繁项目集快速挖掘算法——FMAGF.FMAGF算法采用传送条件频繁模式树或条件模式基来挖掘全局频繁项目集,可有效地减小网络通信量,提高全局频繁项目集挖掘效率.理论分析和实验结果表明提出的算法是有效可行的.  相似文献
6.
最大频繁项目集的快速更新   总被引:28,自引:0,他引:28  
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.为克服基于Apriori的最大频繁项目集挖掘算法存在的不足,DMFIA采用FP-tree存储结构及自顶向下的搜索策略,有效地提高了最大频繁项目集的挖掘效率.但对于频繁项目多而最大频繁项目集维数相对较小的情况,DMFIA要经过多层搜索且在每一层产生大量的候选项目集,因而影响算法的执行效率.为此,该文提出了DMFIA的改进算法IDMFIA(the Improved algorithm of DMFIA).IDMFIA采用自顶向下和自底向上双向搜索策略,可尽早修剪掉较短最大频繁项目集的超集和较长最大频繁项目集的子集.另外,该文还提出最大频繁项目集更新算法FUMFIA(Fast Updating Maximum Frequent Itemsets Algorithm),该算法充分利用已建立的FP-tree和已挖掘的最大频繁项目集,可对已挖掘的最大频繁项目集进行高效维护.实验结果表明,IDMFIA和FUMFIA可有效提高最大频繁项目集的挖掘和更新效率.  相似文献
7.
一种基于前缀广义表的关联规则增量式更新算法   总被引:21,自引:1,他引:20  
杨明  孙志挥 《计算机学报》2003,26(10):1318-1325
关联规则挖掘是数据挖掘研究的一个重要方面,关联规则的高效维护算法研究是当前研究的热点.传统更新算法与Apriori算法框架一致,要多遍扫描数据库并产生大量的候选项目集.为此,该文对FP-tree进行了改进,引入了前缀广义表——PG-List,并提出了基于PG-List的关联规则挖掘(MARBPGL)与增量式更新算法(IUABPGL).算法MARBPGL仅须扫描数据库两遍,算法IUABPGL在最坏的情况下仅须扫描原数据库一遍,扫描新增数据库两遍,且两个算法均无须生成候选项目集,避免了产生“知识的组合爆炸”,提高了挖掘和维护的效率.理论分析和实验结果表明该文提出的算法是有效可行的.  相似文献
8.
数据流频繁模式挖掘研究进展   总被引:20,自引:0,他引:20       下载免费PDF全文
现实世界和工程实践产生了大量的数据流,这种数据不同于传统的静态数据,对其进行有效处理和挖掘遇到了极大的挑战.如何使用有限存储空间进行快速和近似的频繁模式挖掘是数据流挖掘的基本问题,具有非常重要的研究价值和实践意义,已经引起了国内外研究者的广泛关注.本文深入分析数据流中的频繁模式挖掘,对其特点和算法进行较为全面的总结和分类论述,并讨论了存在的主要问题和未来的研究方向.  相似文献
9.
Discovery of frequent DATALOG patterns   总被引:19,自引:0,他引:19  
Discovery of frequent patterns has been studied in a variety of data mining settings. In its simplest form, known from association rule mining, the task is to discover all frequent itemsets, i.e., all combinations of items that are found in a sufficient number of examples. The fundamental task of association rule and frequent set discovery has been extended in various directions, allowing more useful patterns to be discovered with special purpose algorithms. We present WARMR, a general purpose inductive logic programming algorithm that addresses frequent query discovery: a very general DATALOG formulation of the frequent pattern discovery problem.The motivation for this novel approach is twofold. First, exploratory data mining is well supported: WARMR offers the flexibility required to experiment with standard and in particular novel settings not supported by special purpose algorithms. Also, application prototypes based on WARMR can be used as benchmarks in the comparison and evaluation of new special purpose algorithms. Second, the unified representation gives insight to the blurred picture of the frequent pattern discovery domain. Within the DATALOG formulation a number of dimensions appear that relink diverged settings.We demonstrate the frequent query approach and its use on two applications, one in alarm analysis, and one in a chemical toxicology domain.  相似文献
10.
快速挖掘全局最大频繁项目集   总被引:19,自引:1,他引:18       下载免费PDF全文
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.现行可用的最大频繁项目集挖掘算法大多基于单机环境,针对分布式环境下的全局最大频繁项目集挖掘尚不多见.若将基于单机环境的最大频繁项目集挖掘算法运用于分布式环境,或运用分布式环境下的全局频繁项目集挖掘算法来挖掘全局最大频繁项目集,均会产生大量的候选频繁项目集,且网络通信代价高.为此,提出了快速挖掘全局最大频繁项目集算法FMGMFI(fast mining global maximum frequent itemsets),该算法采用FP-tree存储结构,可方便地从各局部FP-tree的相关路径中得到项目集的频度,同时采用自顶向下和自底向上的双向搜索策略,可有效地降低网络通信代价.实验结果表明,FMGMF算法是有效、可行的.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号