首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  完全免费   16篇
  自动化技术   40篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2004年   6篇
排序方式: 共有40条查询结果,搜索用时 78 毫秒
1.
Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist a large number of patterns and/or long patterns.In this study, we propose a novel frequent-pattern tree (FP-tree) structure, which is an extended prefix-tree structure for storing compressed, crucial information about frequent patterns, and develop an efficient FP-tree-based mining method, FP-growth, for mining the complete set of frequent patterns by pattern fragment growth. Efficiency of mining is achieved with three techniques: (1) a large database is compressed into a condensed, smaller data structure, FP-tree which avoids costly, repeated database scans, (2) our FP-tree-based mining adopts a pattern-fragment growth method to avoid the costly generation of a large number of candidate sets, and (3) a partitioning-based, divide-and-conquer method is used to decompose the mining task into a set of smaller tasks for mining confined patterns in conditional databases, which dramatically reduces the search space. Our performance study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns, and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported new frequent-pattern mining methods.  相似文献
2.
挖掘数据流任意滑动时间窗口内频繁模式   总被引:13,自引:0,他引:13       下载免费PDF全文
李国徽  陈 辉 《软件学报》2008,19(10):2585-2596
由于数据流的流动性与连续性,数据流所蕴含的知识会随着时间的推移而发生变化.因此,在绝大多数数据流的应用中,用户往往对新产生的流数据所包含的知识要比对历史流数据所包含的知识感兴趣得多.提出了一种挖掘数据流任意大小滑动时间窗口内频繁模式的方法MSW(mining sliding window).当数据流流过时,该方法使用滑动窗口树SW-tree在单遍扫描流数据的条件下及时捕获数据流上最新的模式信息.同时,该方法还周期性地删除滑动窗口树上过期的及不频繁的模式分支,从而降低滑动窗口树的空间复杂度与维护代价.此外,该方法还应用时间衰减模型逐步降低历史事务模式支持数的权重,并由此来区分最近产生事务与历史事务的模式.大量仿真实验的结果表明,算法MSS具有较高的效率与优良的可扩展性,同时也优于其他同类算法.  相似文献
3.
一种高效频繁子图挖掘算法   总被引:9,自引:0,他引:9       下载免费PDF全文
李先通  李建中  高宏 《软件学报》2007,18(10):2469-2480
由于在频繁项集和频繁序列上取得的成功,数据挖掘技术正在着手解决结构化模式挖掘问题--频繁子图挖掘.诸如化学、生物学、计算机网络和WWW等应用技术都需要挖掘此类模式.提出了一种频繁子图挖掘的新算法.该算法通过对频繁子树的扩展,避免了图挖掘过程中高代价的计算过程.目前最好的频繁子图挖掘算法的时间复杂性是O(n3·2n),其中,n是图集中的频繁边数.提出算法的时间复杂性是O〔2n·n2.5/logn〕,性能提高了O(√n·logn)倍.实验结果也证实了这一理论分析.  相似文献
4.
Frequent pattern mining: current status and future directions   总被引:5,自引:1,他引:4  
Frequent pattern mining has been a focused theme in data mining research for over a decade. Abundant literature has been dedicated to this research and tremendous progress has been made, ranging from efficient and scalable algorithms for frequent itemset mining in transaction databases to numerous research frontiers, such as sequential pattern mining, structured pattern mining, correlation mining, associative classification, and frequent pattern-based clustering, as well as their broad applications. In this article, we provide a brief overview of the current status of frequent pattern mining and discuss a few promising research directions. We believe that frequent pattern mining research has substantially broadened the scope of data analysis and will have deep impact on data mining methodologies and applications in the long run. However, there are still some challenging research issues that need to be solved before frequent pattern mining can claim a cornerstone approach in data mining applications. The work was supported in part by the U.S. National Science Foundation NSF IIS-05-13678/06-42771 and NSF BDI-05-15813. Any opinions, findings, and conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the funding agencies.  相似文献
5.
Mining Condensed Frequent-Pattern Bases   总被引:3,自引:0,他引:3  
Frequent-pattern mining has been studied extensively and has many useful applications. However, frequent-pattern mining often generates too many patterns to be truly efficient or effective. In many applications, it is sufficient to generate and examine frequent patterns with a sufficiently good approximation of the support frequency instead of in full precision. Such a compact but close-enough frequent-pattern base is called a condensed frequent-pattern base.In this paper, we propose and examine several alternatives for the design, representation, and implementation of such condensed frequent-pattern bases. Several algorithms for computing such pattern bases are proposed. Their effectiveness at pattern compression and methods for efficiently computing them are investigated. A systematic performance study is conducted on different kinds of databases, and demonstrates the effectiveness and efficiency of our approach in handling frequent-pattern mining in large databases.  相似文献
6.
Efficient Incremental Maintenance of Frequent Patterns with FP-Tree   总被引:3,自引:0,他引:3       下载免费PDF全文
Mining frequent patterns has been studied popularly in data mining area. However, little work has been done on mining patterns when the database has an influx of fresh data constantly. In these dynamic scenarios, efficient maintenance of the discovered patterns is crucial. Most existing methods need to scan the entire database repeatedly, which is an obvious disadvantage. In this paper, an efficient incremental mining algorithm, Incremental-Mining (IM), is proposed for maintenance of the frequent patterns when new incremental data come. Based on the frequent pattern tree (FP-tree) structure, IM gives a way to make the most of the things from the previous mining process, and requires scanning the original data once at most. Furthermore, IM can identify directly the differential set of frequent patterns, which may be more informative to users. Moreover, IM can deal with changing thresholds as well as changing data, thus provide a full maintenance scheme. IM has been implemented and the performance study shows it outperforms three other incremental algorithms: FUP, DB-tree and re-running frequent pattern growth (FP-growth).  相似文献
7.
Anonymity preserving pattern discovery   总被引:2,自引:0,他引:2  
It is generally believed that data mining results do not violate the anonymity of the individuals recorded in the source database. In fact, data mining models and patterns, in order to ensure a required statistical significance, represent a large number of individuals and thus conceal individual identities: this is the case of the minimum support threshold in frequent pattern mining. In this paper we show that this belief is ill-founded. By shifting the concept of k -anonymity from the source data to the extracted patterns, we formally characterize the notion of a threat to anonymity in the context of pattern discovery, and provide a methodology to efficiently and effectively identify all such possible threats that arise from the disclosure of the set of extracted patterns. On this basis, we obtain a formal notion of privacy protection that allows the disclosure of the extracted knowledge while protecting the anonymity of the individuals in the source database. Moreover, in order to handle the cases where the threats to anonymity cannot be avoided, we study how to eliminate such threats by means of pattern (not data!) distortion performed in a controlled way.  相似文献
8.
基于概率衰减窗口模型的不确定数据流频繁模式挖掘   总被引:2,自引:0,他引:2  
考虑到不确定数据流的不确定性,设计了一种新的概率频繁模式树PFP-tree和基于该树的概率频繁模式挖掘方法PFP-growth.PFP-growth使用事务性不确定数据流及概率衰减窗口模型,通过计算各概率数据项的期望支持度以发现概率频繁模式,其主要特点有:考虑到窗口内不同时间到达数据项的贡献度不同,采用概率衰减窗口模型计算期望支持度,以提高模式挖掘准确度;设置数据项索引表和事务索引表,以加快频繁模式树检索速度;通过剪枝删除不可能成为频繁模式的结点,以降低模式树的存储及检索开销;对每个结点都设立一个事务概率信息链表,以支持数据项在不同事务中具有不同概率的情形.实验结果表明,PFP-growth在保证挖掘模式准确度的前提下,在处理时间和内存空间等方面都具有较好的性能.  相似文献
9.
基于互关联后继树的频繁模式挖掘研究   总被引:1,自引:0,他引:1  
关联规则挖掘是数据挖掘的一个重要的研究内容,而产生频繁模式集是关联规则挖掘的第1步工作。很多传统的频繁模式挖掘算法都需要产生候选模式集,因而效率很低。该文提出了一种不需要产生候选集,而直接构造频繁集的频繁模式挖掘算法——基于互关联后继树的频繁模式挖掘算法。实验证明,该算法具有较好的性能。  相似文献
10.
Constraint-based sequential pattern mining: the pattern-growth methods   总被引:1,自引:0,他引:1  
Constraints are essential for many sequential pattern mining applications. However, there is no systematic study on constraint-based sequential pattern mining. In this paper, we investigate this issue and point out that the framework developed for constrained frequent-pattern mining does not fit our mission well. An extended framework is developed based on a sequential pattern growth methodology. Our study shows that constraints can be effectively and efficiently pushed deep into the sequential pattern mining under this new framework. Moreover, this framework can be extended to constraint-based structured pattern mining as well. This research is supported in part by NSERC Grant 312194-05, NSF Grants IIS-0308001, IIS-0513678, BDI-0515813 and National Science Foundation of China (NSFC) grants No. 60303008 and 69933010. All opinions, findings, conclusions and recommendations in this paper are those of the authors and do not necessarily reflect the views of the funding agencies.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号