首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   3篇
  自动化技术   3篇
  2017年   2篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
针对标准灰狼优化算法在求解复杂工程优化问题时存在求解精度不高和易陷入局部最优的缺点,提出一种新型灰狼优化算法用于求解无约束连续函数优化问题。该算法首先利用反向学习策略产生初始种群个体,为算法全局搜索奠定基础;受粒子群优化算法的启发,提出一种非线性递减收敛因子更新公式,其动态调整以平衡算法的全局搜索能力和局部搜索能力;为避免算法陷入局部最优,对当前最优灰狼个体进行变异操作。对10个测试函数进行仿真实验,结果表明,与标准灰狼优化算法相比,改进灰狼优化算法具有更好的求解精度和更快的收敛速度。  相似文献
2.
分数阶PID控制器相比于传统整数阶PID控制器, 具有控制性能好、鲁棒性强等诸多优势, 可应用于电网的 负荷频率控制(load frequency control, LFC)中. 针对网络化时滞互联电网的LFC问题, 提出了一种基于计算智能的分 数阶PID控制器参数优化整定方案. 该方案选择时滞LFC系统时域输出响应构建优化目标函数, 采用最近提出的灰 狼优化算法获得最优的分数阶PID控制器参数, 所设计的控制器能确保一定时滞区间内LFC系统的稳定性. 仿真算 例表明, 所设计的LFC最优分数阶PID控制器比传统整数阶PID控制器的控制性能更优, 时滞鲁棒性更强.  相似文献
3.
张新明  涂强  康强  程金凤 《计算机科学》2017,44(9):93-98, 124
灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数敏感,且局部搜索能力不足。为了发挥二者各自的优点并弥补存在的缺陷,提出了一种灰狼优化与差分进化的混合优化算法。首先使用嵌入趋优算子的GWO算法搜索,以便在更短的过程中获得更高的优化精度和更快的收敛速度;然后采用自适应调节参数的差分进化策略来进一步提高算法对复杂优化函数的寻优性能,从而获得一种高性能的混合优化算法,以便能更高效地解决各种函数优化问题。对12个高维函数的优化结果表明,与标准GWO,ACS,DMPSO及SinDE相比,新的混合优化算法不仅具有更好的收敛速度和优化性能,而且具有更好的普适性,更适用于解决各种函数优化问题。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号