首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  国内免费   1篇
  完全免费   10篇
  自动化技术   40篇
  2018年   1篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
排序方式: 共有40条查询结果,搜索用时 359 毫秒
1.
基于流形学习的人体动作识别   总被引:5,自引:2,他引:3  
目的 提出了一个基于流形学习的动作识别框架,用来识别深度图像序列中的人体行为。方法 从Kinect设备获得的深度信息中评估出人体的关节点信息,并用相对关节点位置差作为人体特征表达。在训练阶段,利用LE(Lalpacian eigenmaps)流形学习对高维空间下的训练集进行降维,得到低维隐空间下的运动模型。在识别阶段,用最近邻差值方法将测试序列映射到低维流形空间中去,然后进行匹配计算。在匹配过程中,通过使用改进的Hausdorff距离对低维空间下测试序列和训练运动集的吻合度和相似度进行度量。结果 用Kinect设备捕获的数据进行了实验,取得了良好的效果;同时也在MSR Action3D数据库上进行了测试,结果表明在训练样本较多情况下,本文方法识别效果优于以往方法。结论 实验结果表明本文方法适用于基于深度图像序列的人体动作识别。  相似文献
2.
View Invariance for Human Action Recognition   总被引:4,自引:0,他引:4  
This paper presents an approach for viewpoint invariant human action recognition, an area that has received scant attention so far, relative to the overall body of work in human action recognition. It has been established previously that there exist no invariants for 3D to 2D projection. However, there exist a wealth of techniques in 2D invariance that can be used to advantage in 3D to 2D projection. We exploit these techniques and model actions in terms of view-invariant canonical body poses and trajectories in 2D invariance space, leading to a simple and effective way to represent and recognize human actions from a general viewpoint. We first evaluate the approach theoretically and show why a straightforward application of the 2D invariance idea will not work. We describe strategies designed to overcome inherent problems in the straightforward approach and outline the recognition algorithm. We then present results on 2D projections of publicly available human motion capture data as well on manually segmented real image sequences. In addition to robustness to viewpoint change, the approach is robust enough to handle different people, minor variabilities in a given action, and the speed of aciton (and hence, frame-rate) while encoding sufficient distinction among actions. This work was done when the author was a graduate student in the Department of Computer Science and was partially supported by the NSF Grant ECS-02-5475. The author is curently with Siemens Corporate Research, Princeton, NJ. Dr. Chellappa is with the Department of Electrical and Computer Engineering.  相似文献
3.
A survey on vision-based human action recognition   总被引:4,自引:0,他引:4  
Vision-based human action recognition is the process of labeling image sequences with action labels. Robust solutions to this problem have applications in domains such as visual surveillance, video retrieval and human–computer interaction. The task is challenging due to variations in motion performance, recording settings and inter-personal differences. In this survey, we explicitly address these challenges. We provide a detailed overview of current advances in the field. Image representations and the subsequent classification process are discussed separately to focus on the novelties of recent research. Moreover, we discuss limitations of the state of the art and outline promising directions of research.  相似文献
4.
5.
基于级联结构的人体动作识别方法   总被引:1,自引:0,他引:1  
彭江平 《计算机应用》2012,32(6):1578-1580,1608
提出一种基于级联结构的人体动作识别方法:针对Dollar时空兴趣点检测器易受图像噪声、摄像机运动与缩放等因素影响产生伪兴趣点的问题,提出了一种基于轨迹差异度的兴趣点筛选方法,有效避免了引入背景中的伪兴趣点,提高了人体运动特征提取的准确度;采用规范切与最小冗余最大相关(mRMR)准则对词袋模型生成的特征向量进行自动特征选择,同时建立一个用于分类的级联结构,在识别各类不同动作时选择不同的特征子集,使得分类器使用的特征更具区分性.在KTH人体运动测试集上实验,验证了该方法能提高动作识别的准确度.  相似文献
6.
This work describes a computational approach for a typical machine-vision application, that of human action recognition from video streams. We present a method that has the following advantages: (a) no human intervention in pre-processing stages, (b) a reduced feature set, (c) modularity of the recognition system and (d) control of the model’s complexity in acceptable for real-time operation levels. Representation of each video frame and feature extraction procedure are formulated in the lattice theory context. The recognition system consists of two components: an ensemble of neural network predictors which correspond to the training video sequences and one classifier, based on the PREMONN approach, capable of deciding at each time instant which known video source has potentially generated a new sequence of frames. Extensive experimental study on three well known benchmarks validates the flexibility and robustness of the proposed approach.  相似文献
7.
基于图嵌入线性拓展方法的人体动作识别研究   总被引:1,自引:0,他引:1  
采用图嵌入降维的方法对人侧影轮廓数据进行降维处理并用来识别人的行为动作.给定一个动作的图像序列,提取序列中每帧中人的侧影轮廓信号并用之表征人体运动,利用两种图嵌入法将提取的时变轮廓信号投影到低维空间,采用Hausdroff距离测量运动的相似性并在最近邻框架下识别人的动作.为验证算法的有效性,采用留一法和统计方法两种测试方法对五类人体常见动作(走、跑、拍手、挥手和拳击)进行测试.实验结果表明,方法不仅有很好的分类性能,而且能有效的降低了计算量.  相似文献
8.
Recognizing human actions from video has been a challenging problem in computer vision. Although human actions can be inferred from a wide range of data, it has been demonstrated that simple human actions can be inferred by tracking the movement of the head in 2D. This is a promising idea as detecting and tracking the head is expected to be simpler and faster because the head has lower shape variability and higher visibility than other body parts (e.g., hands and/or feet). Although tracking the movement of the head alone does not provide sufficient information for distinguishing among complex human actions, it could serve as a complimentary component of a more sophisticated action recognition system. In this article, we extend this idea by developing a more general, viewpoint invariant, action recognition system by detecting and tracking the 3D position of the head using multiple cameras. The proposed approach employs Principal Component Analysis (PCA) to register the 3D trajectories in a common coordinate system and Dynamic Time Warping (DTW) to align them in time for matching. We present experimental results to demonstrate the potential of using 3D head trajectory information to distinguish among simple but common human actions independently of viewpoint.  相似文献
9.
In this paper we address the problem of modeling and analyzing human motion by focusing on 3D body skeletons. Particularly, our intent is to represent skeletal motion in a geometric and efficient way, leading to an accurate action–recognition system. Here an action is represented by a dynamical system whose observability matrix is characterized as an element of a Grassmann manifold. To formulate our learning algorithm, we propose two distinct ideas: (1) in the first one we perform classification using a Truncated Wrapped Gaussian model, one for each class in its own tangent space. (2) In the second one we propose a novel learning algorithm that uses a vector representation formed by concatenating local coordinates in tangent spaces associated with different classes and training a linear SVM. We evaluate our approaches on three public 3D action datasets: MSR-action 3D, UT-kinect and UCF-kinect datasets; these datasets represent different kinds of challenges and together help provide an exhaustive evaluation. The results show that our approaches either match or exceed state-of-the-art performance reaching 91.21% on MSR-action 3D, 97.91% on UCF-kinect, and 88.5% on UT-kinect. Finally, we evaluate the latency, i.e. the ability to recognize an action before its termination, of our approach and demonstrate improvements relative to other published approaches.  相似文献
10.
Ongoing human action recognition is a challenging problem that has many applications, such as video surveillance, patient monitoring, human–computer interaction, etc. This paper presents a novel framework for recognizing streamed actions using Motion Capture (MoCap) data. Unlike the after-the-fact classification of completed activities, this work aims at achieving early recognition of ongoing activities. The proposed method is time efficient as it is based on histograms of action poses, extracted from MoCap data, that are computed according to Hausdorff distance. The histograms are then compared with the Bhattacharyya distance and warped by a dynamic time warping process to achieve their optimal alignment. This process, implemented by our dynamic programming-based solution, has the advantage of allowing some stretching flexibility to accommodate for possible action length changes. We have shown the success and effectiveness of our solution by testing it on large datasets and comparing it with several state-of-the-art methods. In particular, we were able to achieve excellent recognition rates that have outperformed many well known methods.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号