首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   4篇
  自动化技术   5篇
  2019年   2篇
  2017年   1篇
  2013年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
CBIR系统中的图象语义分割技术   总被引:3,自引:0,他引:3  
随着数字图象技术,宽带网络技术和数字存储设备技术的发展,在网络上存储,传输大规模分布式数字图象库成为可能,因此研究基于内容的图象检索技术成为近几年热点,实现基于内容的图象检索系统的关键问题是实现图象的语义分割,该文分六类对现有的图象语义分割技术进行了全面的总结,为进一步研究基于内容的图象检索技术奠定了基础。  相似文献
2.
图像语义分割方法大多基于点对条件随机场模型, 不能定位到单个目标, 并且难以利用全局形状特征, 造成误识。针对这些问题, 提出一种新的高阶条件随机场模型, 将基于全局形状特征的目标检测结果和点对条件随机场模型统一在一个概率模型框架中, 同时完成图像分割、目标检测与识别的任务。利用目标检测器和前背景分割算法获取图像中目标区域, 在目标区域上定义新的高阶能量项。新的高阶条件随机场模型就是高阶能量项和点对条件随机场模型的加权混合模型, 其最优解即为图像语义分割结果。在MSRC-21类数据库上进行的实验验证了该模型能够显著提升图像语义分割性能, 并定位到单个目标。  相似文献
3.
随着老龄化社会的到来,独居老人的安全问题越来越引人关注.其中,跌倒是老人在家中最常见也是危害最大的风险之一.当前已经有许多关于老人跌倒检测的算法,它们大多应用在摄像头固定的场景下,并主要采用前景提取方法来获取人体轮廓.采用固定摄像头意味着需要为家中每一处独立的空间都安装监控设备才能保证对于老人的全面监控,这显然不实用.基于此,本文采用图像语义分割算法和CNN分类模型,提出了一种可用于移动摄像头上的老人跌倒检测算法.首先采用当前流行的全卷积神经网络(fully convolutional network)语义分割算法[1]分割出图像中的人体,对于满足面积比例条件的情况,直接通过宽高比特征判断人体是否处于跌倒状态;否则,提出一种融合的CNN人体姿态判别模型,将人体区域分成Stand、Fall、Half-Lying三种情况分别进行检测,最后根据三者的分类结果判定图像中是否包含跌倒人体.实验结果显示,文中的算法在具有较高的识别准确率(91.32%)的同时,具有较低的误报率(1.66%).  相似文献
4.
田萱  王亮  丁琪 《软件学报》2019,30(2):440-468
近年来,深度学习技术已经广泛应用到图像语义分割领域.主要对基于深度学习的图像语义分割的经典方法与研究现状进行分类、梳理和总结.根据分割特点和处理粒度的不同,将基于深度学习的图像语义分割方法分为基于区域分类的图像语义分割方法和基于像素分类的图像语义分割方法.把基于像素分类的图像语义分割方法进一步细分为全监督学习图像语义分割方法和弱监督学习图像语义分割方法.对每类方法的代表性算法进行了分析介绍,并详细总结了每类方法的基本思想和优缺点,系统地阐述了深度学习对图像语义分割领域的贡献.对图像语义分割相关实验进行了分析对比,并介绍了图像语义分割实验中常用公共数据集和性能评价指标.最后,预测并分析总结了该领域未来可能的研究方向及相应的发展趋势.  相似文献
5.
基于深度卷积神经网络的图像语义分割方法需要大量像素级标注的训练数据,但标注的过程费时又费力.本文基于生成对抗网络提出一种编码-解码结构的半监督图像语义分割方法,其中编码器-解码器模块作为生成器,整个网络通过耦合标准多分类交叉熵损失和对抗损失进行训练.为充分利用浅层网络包含的丰富的语义信息,本文将编码器中不同尺度的特征输入到分类器,并将得到的不同粒度的分类结果融合,进而优化目标边界.此外,鉴别器通过发现无标签数据分割结果中的可信区域,以此提供额外的监督信号,来实现半监督学习.在PASCAL VOC 2012和Cityscapes上的实验表明,本文提出的方法优于现有的半监督图像语义分割方法.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号