首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   2篇
  自动化技术   4篇
  2002年   1篇
  2001年   3篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
A recurrent stochastic binary network   总被引:1,自引:0,他引:1  
Stochastic neural networks are usually built by introducing random fluctuations into the network. A natural method is to use stochastic connections rather than stochastic activation functions. We propose a new model in which each neuron has very simple functionality but all the connections are stochastic. It is shown that the stationary distribution of the network uniquely exists and it is approxi-mately a Boltzmann-Gibbs distribution. The relationship between the model and the Markov random field is discussed. New techniques to implement simulated annealing and Boltzmann learning are pro-posed. Simulation results on the graph bisection problem and image recognition show that the network is powerful enough to solve real world problems.  相似文献
2.
可用于人脸识别的反馈型二元神经网络   总被引:1,自引:0,他引:1       下载免费PDF全文
赵杰煜 《软件学报》2001,12(8):1128-1139
提出和分析了一种新型的反馈型随机神经网络,并将其用于解决复杂的人脸识别问题.该模型采用随机型加权联接,神经元为简单的非线性处理单元.理论分析揭示该网络模型存在唯一的收敛平稳概率分布,当网络中神经元个数较多时,平稳概率分布逼近于Boltzmann-Gibbs分布,网络模型与马尔可夫随机场之间存在密切关系.在设计了一种新型模拟退火和渐进式Boltzmann学习算法后,系统被成功地应用于难度较大的静态和动态人像识别,实验结果证实了系统的可行性和高效率.  相似文献
3.
复杂运动目标的学习与识别   总被引:1,自引:0,他引:1  
针对复杂运动目标识别问题,提出了一个基于反馈型随机神经网络的运动认脸与物体的自动识别系统,该系统具有强大学习能力,运动目标检测与识别快速准确等特点,在对该的核心-反馈型二元网络进行深入分析的基础上,提出了一种适合于该神经网络模型的高效渐进式Boltzmann学习算法,实验结果表明,该识别系统性能优异,在几个方面超过了eTrue公司的TrueFace人脸识别系统。  相似文献
4.
二进制数据表示具有简洁高效的特点,随机噪声有助于系统摆脱局部极小.新型的随 机神经网络模型采用随机加权联接,内部数据表示为随机二进制序列形式,实现十分高效.文中 分别就前馈型网络和反馈型网络进行了深入的讨论,给出了前馈型网络的梯度下降学习算法, 为反馈型网络设计了快速有效的模拟退火算法和渐进式Boltzmann学习算法.通过对PARITY 问题的测试,发现了新模型的一些有趣特征,实验结果表明梯度下降学习效果显著.利用渐进式 Boltzmann学习,反馈型网络被成功地用于带噪声人脸识别.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号