首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  完全免费   2篇
  自动化技术   7篇
  2019年   1篇
  2017年   2篇
  2013年   2篇
  2007年   1篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 109 毫秒
1
1.
电动汽车用感应电机励磁电感一般较小,高速时铁损大,采用经典矢量控制策略存在轻载低效和由忽略铁损引起的控制不精确等问题.首先根据同步旋转坐标系下考虑铁损的感应电机动态数学模型,分析了铁损对按转子磁场定向矢量控制的影响,给出了动态和稳态两种补偿方案.然后从调节磁通水平的角度,提出了一种基于损耗模型的感应电机能量优化控制策略,并讨论了铁损等效电阻变化对优化控制的影响.仿真和实验结果表明,给出的补偿控制策略克服了经典矢量控制磁场定向及转矩控制不准确的缺陷;提出的的能量优化控制策略不但节能效果明显,而且具有寻优速度快、转矩和转速波动小等优点,为高性能要求的电动汽车电驱动系统高效运行提供了有效途径.  相似文献
2.
针对异步电动机(IM)转矩脉动以及抗干扰能力差的问题,设计了基于模糊滑模控制(FSMC)与负载转矩补偿的新型直接转矩控制(DTC),取代传统PID速度调节器的是一种滑模控制器.为解决滑模控制器中负载转矩脉动的问题,用模糊逻辑控制器取代了传统滑模控制律中的不连续部分,可以明显降低异步电动机在低速运转时的转矩脉动.提出了一种负载转矩观测器来估计未知的负载转矩.负载转矩观测器用来估计负载转矩扰动,估计作为速度环的前馈补偿.仿真结果表明:在低速负载转矩扰动时,该设计具有更好的动态响应和速度性能、更高鲁棒性和更强的抗干扰能力.  相似文献
3.
Finite‐state model predictive control (FS‐MPC) has been widely used for controlling power converters and electric drives. Predictive torque control strategy (PTC) evaluates flux and torque in a cost function to generate an optimal inverter switching state in a sampling period. However, the existing PTC method relies on a traditional proportional‐integral (PI) controller in the external loop for speed regulation. Consequently, the torque reference may not be generated properly, especially when a sudden variation of load or inertia takes place. This paper proposes an enhanced predictive torque control scheme. A Takagi‐Sugeno fuzzy logic controller replaces PI in the external loop for speed regulation. Besides, the proposed controller generates a proper torque reference since it plays an important role in cost function design. This improvement ensures accurate tracking and robust control against different uncertainties. The effectiveness of the presented algorithms is investigated by simulation and experimental validation using MATLAB/Simulink with dSpace 1104 real‐time interface.  相似文献
4.
5.
针对电动汽车行驶过程中路况变化频繁,其对应的配套感应电机给定转速和负载不断变化,从而导致系统平衡点也随之变化的特点和忽略铁损引起的控制不精确的问题,研究了基于动态平衡点的计及电动汽车用感应电机反馈耗散Hamilton控制问题.首先根据感应电机的工作特性计算出平衡点,然后选取适当的状态反馈,通过预置反馈的方法建立了系统的动态模型,并基于能量耗散特性实现了对电动汽车用感应电机在动态平衡点处的反馈耗散Hamilton控制,保证了整个系统的全局稳定性.最后仿真结果验证了该控制策略的有效性.  相似文献
6.
In this paper, the feasibility of embedding the direct torque control (DTC) of an induction machine into field programmable gate arrays (FPGA) is investigated. DTC of an induction machine is simulated in a MATLAB/Simulink environment using a Xilinx system generator. The resulting design has a flexible and modular structure where the designer can customize the hardware blocks by changing the number of inputs, outputs, and algorithm when it is compared to the designs implemented using classical microcontrollers and digital signal processors. With its flexibility, other control algorithms can easily be programmed and embedded into the FPGA. The above system has been implemented on Xilinx Spartan 3A DSP FPGA controller. Simulation and experimentation have been performed to prove the validity of the proposed methodology.  相似文献
7.
This paper proposes a sliding‐mode linearization torque control (SMLTC) for an induction motor (IM). An ideal feedback linearization torque control method is firstly adopted in order to decouple the torque and flux amplitude of the IM. However, the system parameters are uncertainties, which will influence the control performance of the IM in practical applications. Hence, to increase the robustness of the IM drive for high‐ performance applications, this SMLTC aims to improve the immunity of those uncertainties. We modify the flux observer of Benchaib and Edwards [15] by means of the adaptive sliding‐mode method. This not only eliminates the estimation of the uncertainty bounds, but also improves the performance of sliding control. In addition, a practical application of the proposed SMLTC, with a model reference adaptive control (MRAC) scheme incorporated as the inner and outer loop controller used for position control, is also presented. Some experiments are presented to verify the control theory and demonstrate the robustness and effectiveness of the proposed SMLTC.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号