首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   2篇
  自动化技术   2篇
  2019年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
在迁移学习最大的特点就是利用相关领域的知识来帮助完成目标领域中的学习任务,它能够有效地在相似的领域或任务之间进行信息的共享和迁移,使传统的从零开始的学习变成可积累的学习,具有成本低、效率高等优点.针对源领域数据和目标领域数据分布类似的情况,提出一种基于多源动态TrAdaBoost的实例迁移学习方法.该方法考虑多个源领域知识,使得目标任务的学习可以充分利用所有源领域信息,每次训练候选分类器时,所有源领域样本都参与学习,可以获得有利于目标任务学习的有用信息,从而避免负迁移的产生.理论分析验证了所提算法较单源迁移的优势,以及加入动态因子改善了源权重收敛导致的权重熵由源样本转移到目标样本的问题.实验结果验证了此算法在提高识别率方面的优势.  相似文献
2.
倪超  陈翔  刘望舒  顾庆  黄启国  李娜 《软件学报》2019,30(5):1308-1329
在实际软件开发中,需要进行缺陷预测的项目可能是一个新启动项目,或者这个项目的历史训练数据较为稀缺.一种解决方案是利用其他项目(即源项目)已搜集的训练数据来构建模型,并完成对当前项目(即目标项目)的预测.但不同项目的数据集间会存在较大的分布差异性.针对该问题,从特征迁移和实例迁移角度出发,提出了一种两阶段跨项目缺陷预测方法FeCTrA.具体来说,在特征迁移阶段,该方法借助聚类分析选出源项目与目标项目之间具有高分布相似度的特征;在实例迁移阶段,该方法基于TrAdaBoost方法,借助目标项目中的少量已标注实例,从源项目中选出与这些已标注实例分布相近的实例.为了验证FeCTrA方法的有效性,选择Relink数据集和AEEEM数据集作为评测对象,以F1作为评测指标.首先,FeCTrA方法的预测性能要优于仅考虑特征迁移阶段或实例迁移阶段的单阶段方法;其次,与经典的跨项目缺陷预测方法TCA+、Peters过滤法、Burak过滤法以及DCPDP法相比,FeCTrA方法的预测性能在Relink数据集上可以分别提升23%、7.2%、9.8%和38.2%,在AEEEM数据集上可以分别提升96.5%、108.5%、103.6%和107.9%;最后,分析了FeCTrA方法内的影响因素对预测性能的影响,从而为有效使用FeCTrA方法提供了指南.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号