首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  国内免费   18篇
  完全免费   179篇
  自动化技术   461篇
  2018年   1篇
  2017年   9篇
  2016年   13篇
  2015年   23篇
  2014年   26篇
  2013年   23篇
  2012年   38篇
  2011年   44篇
  2010年   41篇
  2009年   37篇
  2008年   56篇
  2007年   42篇
  2006年   39篇
  2005年   24篇
  2004年   23篇
  2003年   7篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有461条查询结果,搜索用时 31 毫秒
1.
核聚类算法   总被引:111,自引:0,他引:111  
该文提出了一种用于聚类分析的核聚类方法,通过利用Mercer核,作者把输入空间的样本映射到高维特征空间后,在特征空间中进行聚类,由于经过了核函数的映射,使原来没有显现的特征突出来,从而能够更好地聚类,该核聚类方法在性能上比以典的聚类算法有较大的改进,具有更快的收敛速度以及更为准确的聚类,仿真实验的结果证实了核聚类方法的可行性和有效性。  相似文献
2.
离群模糊核聚类算法   总被引:32,自引:2,他引:30       下载免费PDF全文
沈红斌  王士同  吴小俊 《软件学报》2004,15(7):1021-1029
一般说来,离群点是远离其他数据点的数据,但很可能包含着极其重要的信息.提出了一种新的离群模糊核聚类算法来发现样本集中的离群点.通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,在经典的FCM模糊聚类算法的基础上得到了一个特征空间内的全新的聚类目标函数,通过对目标函数的优化,最终得到了各个数据的权值,根据权值的大小标识出样本集中的离群点.仿真实验的结果表明了该离群模糊核聚类算法的可行性和有效性.  相似文献
3.
Mean Shift算法的收敛性分析   总被引:23,自引:0,他引:23       下载免费PDF全文
文志强  蔡自兴 《软件学报》2007,18(2):205-212
作为迭代算法,Mean Shift的收敛性研究是应用的基础,而Comaniciu和李乡儒分别证明了Mean Shift的收敛性,但证明过程存在错误.首先指出了Comaniciu和李乡儒的证明过程存在错误;然后,从数学上重新证明了Mean Shift算法的局部收敛性,并指出其收敛到局部极大值的条件;最后,从几何上举反例分析了Mean Shift的收敛性,并进行了深入比较和讨论.这为Mean Shift算法的深入研究及应用奠定了基础.  相似文献
4.
基于插值的核函数构造   总被引:19,自引:3,他引:16  
近年来,统计学习(SLT)和支持向量机(SVM)理论的研究日益受到当前国际机器学习领域的重视.有关核函数的研究则一直是研究的重点.这是因为不同的核函数会导致SVM的泛化能力有很大的不同.如何根据所给数据选择合适的核函数成为人们所关注的核心问题.该文首先指出满足Mercer条件的核函数的具体表达式并非问题关键,在此基础上,该文进一步提出利用散乱数据插值的办法确定特征空间中感兴趣点的内积值以代替传统核函数的一般表达式所起的作用.实验表明该方法不仅能够有效改善支持向量机的设计训练过程中的不确定性,而且泛化能力要优于绝大部分的基于传统核函数的支持向量机.  相似文献
5.
一种基于核函数的非线性感知器算法   总被引:17,自引:1,他引:16  
为了提高经典Rosenblatt感知器算法的分类能力,该文提出一种基于核函数的非线性感知器算法,简称核感知器算法,其特点是用简单的迭代过程和核函数来实现非线性分类器的一种设计,核感知器算法能够处理原始属性空间中线性不可分问题和高维特征空间中线性可分问题。同时,文中详细分析了其算法与径向基函数神经网络、势函数方法和支持向量机等非线性算法的关系。人工和实际数据的计算结果表明:与线性感知器算法相比,核感知器算法可以有效地提高分类精度。  相似文献
6.
基于小波支持向量机的非线性组合预测方法研究   总被引:15,自引:1,他引:14  
基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines, WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构设计和实现算法.通过仿真实验,把该方法与小波神经网络等方法相比较,得到了更好的实验结果,从而验证了该方法的正确性和有效性.  相似文献
7.
基于核的K-均值聚类   总被引:14,自引:0,他引:14  
孔锐  张国宣  施泽生  郭立 《计算机工程》2004,30(11):12-13,80
将核学习方法的思想应用于K-均值聚类中,提出了一种核K-均值聚类算法,算法的主要思想是:首先将原空间中待聚类的样本经过一个非线性映射,映射到一个高维的核空间中,突出各类样本之间的特征差异,然后在这个核空间中进行K-均值聚类。同时还将一种新的核函数应用于核K-均值聚类中以提高算法的速度。为了验证算法的有效性,分别利用人工和实际数据进行K-均值聚类和核K-均值聚类,实验结果显示对于一些特殊的类分布数据,核K-均值聚类比K-均值聚类具有更好的聚类效果。  相似文献
8.
构造性核覆盖算法在图像识别中的应用   总被引:14,自引:0,他引:14  
构造性神经网络的主要特点是:在对给定的具体数据的处理过程中,能同时给出网络的结构和参数;支持向量机就是先通过引入核函数的非线性变换,然后在这个核空间中求取最优线性分类面,其所求得的分类函数,形式上类似于一个神经网络,而构造性核覆盖算法(简称为CKCA)则是一种将神经网络中的构造性学习方法(如覆盖算法)与支持向量机(SVM)中的核函数法相结合的方法。CKCA方法具有运算量小、构造性强、直观等特点,适于处理大规模分类问题和图像识别问题。为验证CKCA算法的应用效果,利用图像质量不高的车牌字符进行了识别实验,并取得了较好的结果。  相似文献
9.
Relationship Between Support Vector Set and Kernel Functions in SVM   总被引:14,自引:0,他引:14       下载免费PDF全文
Based on a constructive learning approach,covering algorithms,we investigate the relationship between support vector sets and kernel functions in support vector machines (SVM).An interesting result is obtained.That is,in the linearly non-separable case,any sample of a given sample set K can become a support vector under a certain kernel function.The result shows that when the sample set K is linearly non-separable,although the chosen kernel function satisfies Mercer‘s condition its corresponding support vector set is not necessarily the subset of K that plays a crucial role in classifying K.For a given sample set,what is the subset that plays the crucial role in classification?In order to explore the problem,a new concept,boundary or boundary points,is defined and its properties are discussed.Given a sample set K,we show that the decision functions for classifying the boundary points of K are the same as that for classifying the K itself.And the boundary points of K only depend on K and the structure of the space at which k is located and independent of the chosen approach for finding the boundary.Therefore,the boundary point set may become the subset of K that plays a crucial role in classification.These results are of importance to understand the principle of the support vector machine(SVM) and to develop new learning algorithms.  相似文献
10.
利用组合核函数提高核主分量分析的性能   总被引:13,自引:2,他引:11  
为了提高图像分类的识别率,在对基于核的学习算法中,核函数的构成条件以及不同核函数的特性进行分析和研究的基础上,提出了一种新的核函数——组合核函数,并将它应用于核主分量分析(KPCA)中,以便进行图像特征的提取,由于新的核函数既可以提取全局特征,又可以提取局部特征,因此,可以提高KPCA在图像特征提取中的性能。为了验证所提出核函数的有效性,首先利用新的核函数进行KPCA,以便对手写数字和脸谱等图像进行特征提取,然后利用线性支持向量机(SVM)来进行识别,实验结果显示,从识别率上看,用组合核函数所提取的特征质量比原核函数所提取的特征质量高。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号