首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   1篇
  自动化技术   3篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
徐杨  李响  常宏  王月星 《软件学报》2012,23(11):2971-2986
随着分布式多智能体系统应用领域和系统规模的不断扩大,网络特性已成为影响系统性能的一个重要因素.通过研究和分析复杂网络特性对大规模分布式多智能体系统协同控制的影响,对多智能体系统性能的影响做出系统性分析,同时为提出大规模多智能体组织结构的优化算法提供依据.主要针对随机网络、小世界网络、网格网络和无尺度网络这4种典型复杂网络特性,从理论和仿真两方面进行分析.在理论方面,通过基于马尔可夫链的信息传输过程在不同网络结构下的建模,对比分析了信息无偏随机游走模型和智能决策模型下的传输效率.在仿真建模中,主要从智能体间信息传输效率、不同应用领域中集成协同控制效率、对网络故障恢复的影响这3个典型的多智能体系统协同控制应用对比分析复杂网络特性对系统性能的影响.研究结果表明,复杂网络特性如小世界和无尺度特性可以在相同的控制策略下形成明显的性能差异,如果设计合理的控制算法,复杂网络结构将有助于多智能体系统性能的提升.  相似文献
2.
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.  相似文献
3.
Agents in a team should be in agreement. Unfortunately, they may come to disagree due to sensor uncertainty, intermittent communication failures, etc. Once a disagreement occurs, the agents should detect and diagnose the disagreement. Current diagnostic techniques do not scale well with the number of agents, as they have high communication and computation complexity. We present novel techniques that enable scalability in three ways. First, we use communications early in the diagnostic process to stave off unneeded reasoning, which ultimately leads to unneeded communications. Second, we use light‐weight (and inaccurate) behavior recognition to focus the diagnostic reasoning on beliefs of agents that might be in conflict. Finally, we propose diagnosing only to a limited number of representative agents (instead of all the agents). We examine these techniques in large‐scale teams of situated agents in two domains and show that combining the techniques produces a diagnostic process that is highly scalable in both communication and computation.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号