首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  国内免费   7篇
  完全免费   99篇
  自动化技术   320篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   19篇
  2013年   7篇
  2012年   20篇
  2011年   43篇
  2010年   35篇
  2009年   33篇
  2008年   27篇
  2007年   28篇
  2006年   29篇
  2005年   25篇
  2004年   17篇
  2003年   17篇
  2002年   5篇
  2000年   1篇
排序方式: 共有320条查询结果,搜索用时 46 毫秒
1.
Fisher线性鉴别分析的理论研究及其应用   总被引:48,自引:1,他引:47       下载免费PDF全文
杨健  杨静宇  叶晖 《自动化学报》2003,29(4):481-493
Fisher线性鉴别分析已成为特征抽取的最为有效的方法之一.但是在高维、小样本情 况下如何抽取Fisher最优鉴别特征仍是一个困难的、至今没有彻底解决的问题.文中引入压缩 映射和同构映射的思想,从理论上巧妙地解决了高维、奇异情况下最优鉴别矢量集的求解问题, 而且该方法求解最优鉴别矢量集的全过程只需要在一个低维的变换空间内进行,这与传统方法 相比极大地降低了计算量.在此理论基础上,进一步为高维、小样本情况下的最优鉴别分析方法 建立了一个通用的算法框架,即先作K-L变换,再用Fisher鉴别变换作二次特征抽取.基于该 算法框架,提出了组合线性鉴别法,该方法综合利用了F-S鉴别和J-Y鉴别的优点,同时消除了 二者的弱点.在ORL标准人脸库上的试验表明,组合鉴别法所抽取的特征在普通的最小距离分 类器和最近邻分类器下均达到97%的正确识别率,而且识别结果十分稳定.该结果大大优于经 典的特征脸和Fisherfaces方法的识别结果.  相似文献
2.
基于奇异值分解和判别式KL投影的人脸识别   总被引:38,自引:0,他引:38       下载免费PDF全文
周德龙  高文  赵德斌 《软件学报》2003,14(4):783-789
人脸识别是计算机视觉和模式识别领域的一个活跃课题,有着十分广泛的应用前景.提出了一种新的彩色人脸识别方法.该算法采用模拟K-L变换、奇异值分解、主分量分析和Fisher线性判别分析技术来提取最终特征,可以使分类器的设计更加简洁、有效,使用较少的特征向量数目就能取得较高的识别率.仿真结果表明了该方法的有效性.  相似文献
3.
最大散度差和大间距线性投影与支持向量机   总被引:31,自引:2,他引:29       下载免费PDF全文
首先对Fisher鉴别准则作了必要的修正,并基于新的鉴别准则设计了最大散度差分 类器;然后探讨了当参数C趋向无穷大时,最大散度差分类器的极限情况,得到了大间距线 性投影分类器;最后通过分析说明,大间距线性投影分类器实际上是在模式样本线性可分的条 件下,线性支持向量机的一种特殊情况.在ORL和NUST603人脸库上的测试结果表明,最 大散度差分类器和大间距线性投影分类器可以与线性支持向量机、不相关线性鉴别分析相媲 美,优于Foley-Sammon鉴别分析方法.  相似文献
4.
基于模块2DPCA的人脸识别方法   总被引:20,自引:2,他引:18  
提出了模块2DPCA(two-dimensional principal component analysis)的人脸识别方法。模块2DPCA方法先对图像矩阵进行分块,将分块得到的子图像矩阵直接用于构造总体散布矩阵,然后利用总体散布矩阵的特征向量进行图像特征抽取。与基于图像向量的鉴别方法(比如PCA)相比,该方法在特征抽取之前不需要将子图像矩阵转化为图像向量,能快速地降低鉴别特征的维数,可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,模块2DPCA是2DPCA的推广。在ORL和NUST603人脸库上的试验结果表明,模块2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。  相似文献
5.
小样本情况下Fisher线性鉴别分析的理论及其验证   总被引:12,自引:0,他引:12  
线性鉴别分析是特征抽取中最为经典和广泛使用的方法之一。近几年,在小样本情况下如何抽取F isher最优鉴别特征一直是许多研究者关心的问题。本文应用投影变换和同构变换的原理,从理论上解决了小样本情况下最优鉴别矢量的求解问题,即最优鉴别矢量可在一个低维空间里求得;给出了特征抽取模型,并给出求解模型的PPCA+LDA算法;在ORL人脸库3种分辨率灰度图像上进行实验。实验结果表明,PPCA+LDA算法抽取的鉴别向量有较强的特征抽取能力,在普通的最小距离分类器下能达到较高的正确识别率,而且识别结果十分稳定。  相似文献
6.
人脸识别中的"误配准灾难"问题研究   总被引:11,自引:0,他引:11  
现有的多数人脸识别系统都要依赖于面部特征(比如眼睛中心位置)的严格配准来归一化人脸以便提取人脸描述特征,但面部特征配准的准确度如何影响人脸识别算法的性能却没有得到足够的重视.该文作者首次针对这一问题进行了系统的研究,并提出了一种基于误配准学习的解决方案.为了揭示现有典型识别算法的识别性能对特征配准准确度的敏感程度,通过对眼睛位置人为加扰,作者对Fisherface算法的识别性能随平移、旋转和尺度改变而变化的情况进行了实验评估.结果表明:Fisherface的识别性能随着误配准的增大而急剧下降——称这一现象为“误配准灾难”问题.针对此问题,作者提出了一种基于扰动学习的“误配准灾难”解决方案,该方法通过在模型训练阶段加入扰动配准偏差来提高判别分析方法对误配准的鲁棒性.在FERET人脸图像数据库和CAS—PEAL-R1人脸库上的实验表明该方法可以有效地提高识别算法对误配准的鲁棒性.  相似文献
7.
Theory analysis on FSLDA and ULDA   总被引:10,自引:0,他引:10  
Yong  Jing-yu  Zhong 《Pattern Recognition》2003,36(12):3031-3033
It is first revealed that the Fisher criterion ratio of each FSLDA discriminant vector must not be less than that of corresponding ULDA discriminant vector. So, the phenomenon in Yang et al. (Pattern Recognition 35 (2002) 2665) is not strange but certain, and must be available in all experiments! In addition, it is also first illustrated that in fact ULDA discriminant vectors are the St− orthogonal eigenvectors of a generalized eigenequation. As a result, the algorithms to obtain St− orthogonal eigenvectors of the generalized eigenequation are equivalent to the ULDA algorithm. Consequently, it is possible to work out ULDA discriminant vectors more efficiently.  相似文献
8.
利用标准化LDA进行人脸识别   总被引:10,自引:0,他引:10  
线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。提出一种基于LDA的人脸识别方法--标准化LDA,该方法克服了传统LDA方法的缺点,重新定义了样本类间离散度矩阵,在原始定义的基础上增加一个由类间距离决定的可变权函数,使得在选择投地,能够更好地分开各个类的样本;同时,它采用一种合理而有效的方法解决矩阵奇异的问题,即保留样本类内离散度矩阵的零空间,因为这个空间包含了最具有判别能力的信息。在这个零空间里,寻找对应于样本类间离散度矩阵的较大特征值的特征向量作为最后降维的转换矩阵。实验结果显示,在人脸识别中,与传统LDA相比,该方法有更好的识别率。标准化LDA也可以用于其他图像识别问题。  相似文献
9.
电子鼻技术在茶叶品质检测中的应用研究   总被引:10,自引:0,他引:10  
以电子鼻作为检测手段,对同类不同等级的茶叶、茶水和茶底挥发性成分进行检测,并对采集到的数据进行分析。首先通过主成分分析进行特征提取来压缩数据维数,减少数据计算量,进而优化特征向量。然后采用线性判别和BP神经网络的方法对茶叶的不同等级进行分类判别。结果显示,误判样本都发生在T60和T100之间,两种判别方法结果比较一致。相对于茶叶和茶底,以各等级茶水为研究对象时,两种方法对茶叶品质等级的判别及测试结果相对都比较好。  相似文献
10.
二维主成分分析方法的推广及其在人脸识别中的应用   总被引:9,自引:2,他引:7  
提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方法相比,使用低维的鉴别特征矩阵,而达到较高(至少是不低)的正确识别率。此外,2DPCA是分块2DPCA的特例。在ORL和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上优于2DPCA方法。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号