首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  国内免费   1篇
  完全免费   43篇
  自动化技术   55篇
  2018年   3篇
  2017年   7篇
  2016年   14篇
  2015年   9篇
  2014年   3篇
  2013年   2篇
  2012年   8篇
  2011年   3篇
  2010年   2篇
  2008年   3篇
  2006年   1篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
1.
Markov logic networks   总被引:5,自引:0,他引:5  
We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a first-order formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudo-likelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a real-world database and knowledge base in a university domain illustrate the promise of this approach. Editors: Hendrik Blockeel, David Jensen and Stefan Kramer An erratum to this article is available at .  相似文献
2.
基于链路预测的VANET路由算法   总被引:3,自引:0,他引:3       下载免费PDF全文
在车载自组织网络(VANET)中,AODV路由算法存在控制开销大、路由发现和修复时间长等不足。为此,对AODV算法进行局部优化,提出一种改进的路由算法,利用节点位置、运动速度等信息预测链路失效时间。在路由发现阶段,将链路失效时间最大的路径作为传输路径;在路由维护阶段,设置定时器并提前触发路由寻路,减少路径搜寻时间。仿真结果表明,与AODV算法相比,该算法在数据包端到端延迟、传输吞吐率及报文投递率等方面性能较好。  相似文献
3.
基于半监督学习的链接预测算法的研究*   总被引:2,自引:1,他引:1       下载免费PDF全文
针对链接挖掘中网络的结构难以预测这个难点问题,提出了一个关于链接预测的新型半监督学习方法——基于快速共轭梯度方法和链接相似性传递增殖原理的链接预测算法,利用节点相似性等辅助信息去预测未知结构。该算法利用张量的形式去表示多维的复杂的多关系数据,利用克罗内克积与克罗内克和去计算张量之间的相似性,利用向量特技方法降低了算法的时间和空间复杂度。在社会网络和生物信息网络等环境下,通过实验验证了算法的有效性和健壮性。  相似文献
4.
针对通信社会网络的时间序列链接预测算法   总被引:1,自引:0,他引:1       下载免费PDF全文
已有静态链接预测主要采用覆盖图表示社会网络,利用链接之间的结构信息来预测链接的发生。然而,这些方法仅能预测新链接的发生,而对旧链接的重复发生没有做预测,因此不适合预测重复发生的链接是主要兴趣的应用领域。针对静态链接预测算法的不足,引入时间序列链接预测算法,并且组合静态和时间序列链接预测算法为混合时间序列链接预测算法。在Enron电子邮件数据集上的实验结果表明,时间序列链接预测算法性能优于静态链接预测,混合时间序列链接预测算法的预测性能比单独使用静态或时间序列链接预测算法都要优越。  相似文献
5.
基于节点相似性的链接预测   总被引:1,自引:0,他引:1       下载免费PDF全文
东昱晓  柯庆  吴斌 《计算机科学》2011,38(7):162-164
链接预测是图数据挖掘中的一个重要问题。它是通过已知的网络结构等信息预测和估计尚未链接的两个节点存在链接的可能性。目前大部分基于节点相似性的链接预测算法只考虑共同部居节点的个体特征,针对目前预测。算法对共同部居节点间相互关系的考虑不足,提出了一种新算法:节点引力指数算法。该算法在保持低时间复杂度的同时,提高了预测的准确率。通过多个现实网络实验证实了算法的预测效果。  相似文献
6.
近年来,链接预测成为社会网络和其他复杂网络链接挖掘中的热门研究领域.在链接预测问题中,经常会存在用来提高预测效果的附加数据信息源,这些数据可以用于预测网络中的链接是否存在.在所有的数据源中,最主要的数据源在链接预测中起到最重要的作用.因此,设计具备健壮性的算法用于充分利用所有数据源的信息来进行链接预测十分重要,算法还需要平衡主数据源和附加数据源的关系,使得链接预测能够获得更好的效果.同时,传统基于拓扑结构计算的无监督算法大多数通过计算网络中节点间的评分值来解决预测链接存在可能性的问题,这些方法能够获得有效的结果.在链接预测方法中,最关键的一步是构建准确的输入矩阵数据.由于许多真实世界数据集存在噪声,这导致降低了大多数链接预测模型的效果.提出了一种新的链接预测方法,通过多个数据源的融合,兼顾地利用了主数据源的信息和其他附加数据源的信息.接着,主数据源和其他附加数据源被用于构建一个低噪声且更准确的矩阵,而新的矩阵被用于作为传统无监督拓扑链接预测算法的输入.根据在多个真实世界数据上的测试结果,在多源数据集上进行对比实验,提出的基于低秩和稀疏矩阵分解的多源融合链接预测算法相对于基准算法能够获得更好的效果.  相似文献
7.
为了增加基于用户的协同过滤方法在预测Web服务质量时的相似性用户数目,进而提高Web服务的质量,首先构建一个用户相似性网络,并通过链接预测的方法找出潜在的相似性用户,最后综合应用相似性用户和预测出的潜在相似性用户预测用户的Web服务质量.实验表明,提出的方法在提高预测成功率的同时,还降低了预测的误差,因而适用于稀疏的Web服务质量预测.  相似文献
8.
基于位置的社交网络(Location-Based Social Network,LBSN)提供了用户在线网络关系和签到行为双重信息,连接了虚拟网络和现实生活.本文结合传统的基于网络结构和空间位置相似性的LBSN链接预测方法,从签到时间和频率2方面提出新的链接预测特征,通过Brightkite网络数据统计分析证明其预测有效性.综合多种指标建立LBSN链接预测框架,实验结果表明加入这2类指标后预测准确率有明显提高.  相似文献
9.
链接预测属于复杂网络分析的研究分支,它根据网络历史结构信息预测未来节点间会产生链接的可能性,从而挖掘网络的传播和演化方式。通过引入差分化节点的贡献权重并结合经典的节点和共邻节点网络拓扑结构特征,分别应用七类有监督学习 分类模型对社交、生物、交通等不同领域的八个真实复杂网络数据集进行实验,并采用Precision和ROC曲线对实验结果进行分析与评价。实验表明,引入基于差分化节点的贡献特征能够在深入挖掘网络结构信息的基础上比其余特征有更优的预测精确度,同时差异化的分类模型和特征选择对链接预测性能有相异的影响。  相似文献
10.
在大数据时代,互联网社会网络和其他复杂网络中的链接预测问题研究成为热门领域。链接预测相关的方法已被广泛地应用于社会网络关系挖掘、个性化推荐和生物制药等领域。在链接预测问题中,通常使用相似性矩阵来表示网络中任意节点之间存在链接的可能性,因此相似性矩阵的计算是链接预测中至关重要的一步。近年来的研究中,大多数方法是基于已知网络中数据的分析,通过网络潜在结构设计机器学习算法构造相似性矩阵。在全局低秩的网络结构假设下,结合网络中节点特征的局部约束,提出了一种基于数据的链接预测优化算法,并针对复杂网络数据链接预测问题设计了可扩展的分治方法,便于分布式环境中对大规模数据进行求解。通过在多个真实数据集上的实验和结果分析,基于低秩结构和局部约束矩阵估计的链接预测分治方法能够取得较好的效果,并对复杂的网络结构数据具有较强的可扩展性。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号