首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  完全免费   5篇
  自动化技术   8篇
  2015年   3篇
  2013年   1篇
  2012年   4篇
排序方式: 共有8条查询结果,搜索用时 78 毫秒
1
1.
领域适应学习是一种新颖的解决先验信息缺少的模式分类问题的有效方法, 最大化地缩小领域间样本分布差是领域适应学习成功的关键因素之一,而仅考虑领域间分布均值差最小化, 使得在具体领域适应学习问题上存在一定的局限性.对此,在某个再生核Hilbert空间, 在充分考虑领域间分布的均值差和散度差最小化的基础上,基于结构风险最小化模型, 提出一种领域适应核支持向量学习机(Kernel support vector machine for domain adaptation, DAKSVM)及其最小平方范式,人造和实际数据集实验结果显示,所提方法具有优化或可比较的模式分类性能.  相似文献
2.
3.
Domain adaptation learning(DAL) methods have shown promising results by utilizing labeled samples from the source(or auxiliary) domain(s) to learn a robust classifier for the target domain which has a few or even no labeled samples.However,there exist several key issues which need to be addressed in the state-of-theart DAL methods such as sufficient and effective distribution discrepancy metric learning,effective kernel space learning,and multiple source domains transfer learning,etc.Aiming at the mentioned-above issues,in this paper,we propose a unified kernel learning framework for domain adaptation learning and its effective extension based on multiple kernel learning(MKL) schema,regularized by the proposed new minimum distribution distance metric criterion which minimizes both the distribution mean discrepancy and the distribution scatter discrepancy between source and target domains,into which many existing kernel methods(like support vector machine(SVM),v-SVM,and least-square SVM) can be readily incorporated.Our framework,referred to as kernel learning for domain adaptation learning(KLDAL),simultaneously learns an optimal kernel space and a robust classifier by minimizing both the structural risk functional and the distribution discrepancy between different domains.Moreover,we extend the framework KLDAL to multiple kernel learning framework referred to as MKLDAL.Under the KLDAL or MKLDAL framework,we also propose three effective formulations called KLDAL-SVM or MKLDAL-SVM with respect to SVM and its variant μ-KLDALSVM or μ-MKLDALSVM with respect to v-SVM,and KLDAL-LSSVM or MKLDAL-LSSVM with respect to the least-square SVM,respectively.Comprehensive experiments on real-world data sets verify the outperformed or comparable effectiveness of the proposed frameworks.  相似文献
4.
目的 多模态信息交叉检索的根本问题是多模态数据的特征表示。稀疏编码是一种有效的数据特征表示方法,但是当查询数据和被检索数据来自不同模态时,数据间存在分布差异,相似的特征可能被编码为差异显著的稀疏表示,此时传统稀疏编码便不再适用。为此,提出了一种基于稀疏编码的多模态信息交叉检索算法。方法 采用最大均值差异(MMD)以及图拉普拉斯,并将二者加入到稀疏编码的目标函数中来充分利用多模态信息进行编码,模型求解采用特征符号搜索和离散线搜索算法逐个更新稀疏编码系数。结果 在Wikipedia的文本图像对数据上进行实验,并与传统稀疏编码进行比较,实验结果表明,本文算法使交叉检索的平均准确率(MAP)提高了18.7%。结论 本文算法增强了稀疏表示的鲁棒性,提高了多模态交叉检索的准确率,更适用于对多模态数据进行特征提取,并进行进一步的操作,如交叉检索、分类等。  相似文献
5.
稀疏表示因其所具有的鲁棒性,在模式分类领域逐渐得到关注.研究了一种基于稀疏保留模型的新颖领域适应学习方法,并提出一种鲁棒的稀疏标签传播领域适应学习(sparse label propagation domain adaptation learning,简称SLPDAL)算法.SLPDAL通过将目标领域数据进行稀疏重构,以实现源领域数据标签向目标领域平滑传播.具体来讲,SLPDAL算法分为3步:首先,基于领域间数据分布均值差最小化准则寻求一个优化的核空间,并将领域数据嵌入到该核空间;然后,在该嵌入核空间,基于l1-范最小化准则计算各领域数据的核稀疏重构系数;最后,通过保留领域数据间核稀疏重构系数约束,实现源领域数据标签向目标领域的传播.最后,将SLPDAL算法推广到多核学习框架,提出一个SLPDAL多核学习模型.在鲁棒人脸识别、视频概念检测和文本分类等领域适应学习任务上进行比较实验,所提出的方法取得了优于或可比较的学习性能.  相似文献
6.
陶剑文  王士同 《软件学报》2012,23(9):2297-2310
领域适应(或跨领域)学习旨在利用源领域(或辅助领域)中带标签样本来学习一种鲁棒的目标分类器,其关键问题在于如何最大化地减小领域间的分布差异.为了有效解决领域间特征分布的变化问题,提出一种三段式多核局部领域适应学习(multiple kernel local leaning-based domain adaptation,简称MKLDA)方法:1)基于最大均值差(maximum mean discrepancy,简称MMD)度量准则和结构风险最小化模型,同时,学习一个再生多核Hilbert空间和一个初始的支持向量机(support vector machine,简称SVM),对目标领域数据进行初始划分;2)在习得的多核Hilbert空间,对目标领域数据的类别信息进行局部重构学习;3)最后,利用学习获得的类别信息,在目标领域训练学习一个鲁棒的目标分类器.实验结果显示,所提方法具有优化或可比较的领域适应学习性能.  相似文献
7.
领域适应学习旨在利用源领域中带标签的样本来解决目标领域的学习问题,其关键在于如何最大化地减小领域间的分布差异,有效解决领域间数据分布的变化。对当前领域适应学习算法进行了归纳和分类,总结了每类算法的特点,分析了5个相关典型算法并比较了其性能。最后指出了领域适应学习值得进一步探索的方向。  相似文献
8.
陶剑文  王士同 《自动化学报》2013,39(8):1295-1309
针对领域适应学习(Domain adaptation learning, DAL)问题,提出一种核分布一致局部领域适应学习机(Kernel distribution consistency based local domain adaptation classifier, KDC-LDAC),在某个通用再生核Hilbert空间(Universally reproduced kernel Hilbert space, URKHS),基于结构风险最小化模型, KDC-LDAC首先学习一个核分布一致正则化支持向量机(Support vector machine, SVM),对目标数据进行初始划分; 然后,基于核局部学习思想,对目标数据类别信息进行局部回归重构; 最后,利用学习获得的类别信息,在目标领域训练学习一个适于目标判别的分类器.人 造和实际数据集实验结果显示,所提方法具有优化或可比较的领域适应学习性能.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号