首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8697篇
  免费   465篇
  国内免费   186篇
电工技术   197篇
综合类   272篇
化学工业   1367篇
金属工艺   327篇
机械仪表   377篇
建筑科学   1010篇
矿业工程   119篇
能源动力   631篇
轻工业   376篇
水利工程   269篇
石油天然气   170篇
武器工业   18篇
无线电   244篇
一般工业技术   1644篇
冶金工业   178篇
原子能技术   37篇
自动化技术   2112篇
  2024年   2篇
  2023年   124篇
  2022年   88篇
  2021年   178篇
  2020年   206篇
  2019年   266篇
  2018年   273篇
  2017年   353篇
  2016年   388篇
  2015年   375篇
  2014年   403篇
  2013年   983篇
  2012年   325篇
  2011年   463篇
  2010年   326篇
  2009年   443篇
  2008年   397篇
  2007年   378篇
  2006年   360篇
  2005年   291篇
  2004年   267篇
  2003年   242篇
  2002年   235篇
  2001年   166篇
  2000年   173篇
  1999年   169篇
  1998年   202篇
  1997年   150篇
  1996年   197篇
  1995年   142篇
  1994年   140篇
  1993年   94篇
  1992年   98篇
  1991年   82篇
  1990年   41篇
  1989年   45篇
  1988年   38篇
  1987年   39篇
  1986年   22篇
  1985年   40篇
  1984年   33篇
  1983年   35篇
  1982年   21篇
  1981年   10篇
  1980年   20篇
  1979年   8篇
  1978年   10篇
  1977年   5篇
  1975年   2篇
排序方式: 共有9348条查询结果,搜索用时 15 毫秒
1.
Hydrogen has been considered as a promising renewable source to replace fossil fuels to meet energy demand and achieve net-zero carbon emission target. Underground hydrogen storage attracts more interest as it shows potential to store hydrogen at large-scale safely and economically. Meanwhile, wettability is one of the most important formation parameters which can affect hydrogen injection rate, reproduction efficiency and storage capacity. However, current knowledge is still very limited on how fluid-rock interactions affect formation wettability at in-situ conditions. In this study, we thus performed geochemical modelling to interpret our previous brine contact angle measurements of H2-brine-calcite system. The calcite surface potential at various temperatures, pressures and salinities was calculated to predict disjoining pressure. Moreover, the surface species concentrations of calcite and organic stearic acid were estimated to characterize calcite-organic acid electrostatic attractions and thus hydrogen wettability. The results of the study showed that increasing temperature increases the disjoining pressure on calcite surface, which intensifies the repulsion force of H2 against calcite and increases the hydrophilicity. Increasing salinity decreases the disjoining pressure, leading to more H2-wet and contact angle increment. Besides, increasing stearic acid concentration remarkably strengthens the adhesion force between calcite and organic acid, which leads to more hydrophobic and H2-wet. In general, the results from geochemical modelling are consistent with experimental observations that decreasing temperature and increasing salinity and organic acid concentration increase water contact angle. This work also demonstrates the importance of involving geochemical modelling on H2 wettability assessment during underground hydrogen storage.  相似文献   
2.
Metals that are exposed to high pressure hydrogen gas may undergo detrimental failure by embrittlement. Understanding the mechanisms and driving forces of hydrogen absorption on the surface of metals is crucial for avoiding hydrogen embrittlement. In this study, the effect of stress-enhanced gaseous hydrogen uptake in bulk metals is investigated in detail. For that purpose, a generalized form of Sievert's law is derived from thermodynamic potentials considering the effect of microstructural trapping sites and multiaxial stresses. This new equation is parametrized and verified using experimental data for carbon steels, which were charged under gaseous hydrogen atmosphere at pressures up to 1000 bar. The role of microstructural trapping sites on the parameter identification is critically discussed. Finally, the parametrized equation is applied to calculate the stress-enhanced hydrogen solubility of thin-walled pipelines and thick-walled pressure vessels during service.  相似文献   
3.
Previous experimental results indicate that the humidification conditions at the anode have an impact on the liquid water distribution in the cathode gas diffusion layer. Numerical simulations are developed to reproduce and analyze this effect. Results consistent with the experimental results are first obtained by playing with the partition coefficients of an advanced pore network model computing the liquid water formation and transfer in the cathode gas diffusion layer (GDL) for a large range of operating conditions. Then, a model for the full anode – cathode assembly is developed by combining the pore network model of the cathode GDL and a 1D model describing the heat and water transfer in the various components of the anode-cathode assembly. This enables one to generalize the dry – wet regime diagram introduced in a previous work by incorporating the effect of the humidity condition at the anode.  相似文献   
4.
Thermal flow characteristics and the methane conversion reaction in a low power arc plasma reactor for efficient storage and transport of methane, which is the main component of shale gas, were simulated. The temperature and velocity distributions were calculated according to the type of discharge gases and arc current level by a self-developed magnetohydrodynamics (MHD) code and a commercial ANSYS-FLUENT code; the transport of chemical species was analyzed as including the chemical reactions of methane conversion. The simulated results were verified by the comparison of calculated and measured arc voltages with permissible low error as under 4%. Three C2 hydrocarbon gases with ethane (C2H6), ethylene (C2H4), and acetylene (C2H2) were selected as the converted species of methane from experimental data. The mass fraction of C2 hydrocarbons and hydrogen as the product of the conversion reaction at the reactor was also calculated. Those values show good agreement with the actual experimental results in that the major conversion reaction occurred in C2H2 and hydrogen, and the conversions to C2H6, C2H4, and hydrogen were minor reactions of methane pyrolysis conversion.  相似文献   
5.
MCrAlY (M = Ni, Co) coatings are commonly used on gas-turbine components as oxidation resistant overlay coatings and bondcoats for thermal barrier systems. The present work focuses on the effect of the aluminizing process on the CoNiCrAlY coating microstructure. In the as-received condition the outer part of the coating consisted mostly of β-(Ni,Co)Al with interspersed precipitates of Cr-rich carbide and Cr-rich boride precipitates. Formation of σ-CoCr was observed at the interface between the β-layer and the inner initial CoNiCrAlY microstructure. Scanning electron microscopy (SEM) combined with energy and wavelength-dispersive X-ray spectroscopy (EDX/WDX) was employed to characterize the aluminized CoNiCrAlY coating. Phases were then identified by electron backscatter diffraction (EBSD). Detailed microstructural studies of the coating were corroborated with the help of coupled thermodynamic-kinetic calculations to model the aluminizing process. The calculations were performed with the in-house developed code employing the commercially available thermodynamic and kinetic databases (ThermoCalc). The mechanisms of the observed microstructural changes were elucidated with the help of the modelling results.  相似文献   
6.
Ordered arrays of TiO2 nanotubes with smooth and rippled morphologies were prepared by one-step titanium oxidation in NH4F and ethylene glycol solution. The samples were then decorated with ZnS using a microwave-assisted solvothermal method. The experiments under constant or pulsed applied voltage resulted in smooth and rippled TiO2material morphologies, respectively. Field emission scanning electron microscopy, incident photon-to-current efficiency, linear sweep voltammetry and electrochemical impedance spectroscopy were used to investigate the structure and morphology of the TiO2 nanotubes, along with their photoelectrochemical activity in the water splitting reaction. An envelope function was proposed to correlate the anisotropic morphologies and broad distribution of mobility due to the random nature of charge carrier transport. The smooth and rippled morphologies were evaluated using the transmission line model. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level are conducted to obtain a better understanding of optical properties of TiO2.  相似文献   
7.
Experimental results based on in-situ measurements at the interface between the catalyst layer and the gas diffusion layer (GDL) on the cathode side at the channel – rib scale show an interesting variation of the current density distribution as the mean current density is increased. It is found that the local current density below the rib median axis corresponds to a maximum at low to intermediate mean current densities and to a minimum when the mean current density is sufficiently high. Also, the higher is the current density, the more marked the minimum. From numerical simulations, it is shown that the current density distribution inversion phenomenon is strongly correlated to the liquid water zone development within the GDL.  相似文献   
8.
准噶尔盆地南缘中、下组合构造普遍位于中浅层砾岩层之下,砾岩层具有横向展布范围广且不规则、纵横向速度变化大等特点,严重制约中、下组合目标的精细落实。因此,搞清砾岩层结构及分布特征,对下伏构造形态和高点位置的准确落实尤为重要。结合微测井、钻井、测井资料以及地震剖面对准噶尔盆地南缘四棵树地区中浅层砾岩层结构特征进行分析,对低速和高速砾岩层的顶底界面进行识别刻画,并分区、分段建立了砾岩层时深关系曲线,用于指导深度域下组合构造成图和叠前深度偏移中浅层速度模型的建立。实例应用证明,南缘四棵树地区中浅层砾岩层识别刻画对准确落实构造目标,提高地震剖面成像品质至关重要,同样也可以在准噶尔盆地南缘其他类似地区进行推广应用。  相似文献   
9.
Electromagnetic hyperthermia as a potent adjuvant for conventional cancer therapies can be considered valuable in modern oncology, as its task is to thermally destroy cancer cells exposed to high-frequency electromagnetic fields. Hyperthermia treatment planning based on computer in silico simulations has the potential to improve the localized heating of breast tissues through the use of the phased-array dipole applicators. Herein, we intended to improve our understanding of temperature estimation in an anatomically accurate female breast phantom embedded with a tumor, particularly when it is exposed to an eight-element dipole antenna matrix surrounding the breast tissues. The Maxwell equations coupled with the modified Pennes’ bioheat equation was solved in the modelled breast tissues using the finite-difference time-domain (FDTD) engine. The microwave (MW) applicators around the object were modelled with shortened half-wavelength dipole antennas operating at the same 1 GHz frequency, but with different input power and phases for the dipole sources. The total input power of an eight-dipole antenna matrix was set at 8 W so that the temperature in the breast tumor did not exceed 42 °C. Finding the optimal setting for each dipole antenna from the matrix was our primary objective. Such a procedure should form the basis of any successful hyperthermia treatment planning. We applied the algorithm of multi for multi-objective optimization for the power and phases for the dipole sources in terms of maximizing the specific absorption rate (SAR) parameter inside the breast tumor while minimizing this parameter in the healthy tissues. Electro-thermal simulations were performed for tumors of different radii to confirm the reliable operation of the given optimization procedure. In the next step, thermal profiles for tumors of various sizes were calculated for the optimal parameters of dipole sources. The computed results showed that larger tumors heated better than smaller tumors; however, the procedure worked well regardless of the tumor size. This verifies the effectiveness of the applied optimization method, regardless of the various stages of breast tumor development.  相似文献   
10.
能源和化学品价格的快速上涨使得制浆工作者尤为关注如何降低纸浆漂白成本。本研究构建了纸浆漂白成本的在线计算模型,并应用于典型ECF漂白技术(D0EpPD1),同时系统分析了影响纸浆漂白成本的主要因素和该模型在漂白工艺条件优化过程中的应用效果。研究发现,化学品成本是影响漂白成本的最主要因素,其次是能源成本、废水处理成本、清水成本;化学品中ClO2用量对纸浆漂白成本的影响最大,其次是H2O2用量,NaOH用量影响最小;能源成本中蒸汽用量对纸浆漂白成本影响最大;而清水成本和废水处理成本影响最小;通过对化学品用量、漂白温度等漂白工艺条件的调整可降低纸浆漂白成本;该模型可实现对漂白工艺条件的优化或能源及化学品价格变化后纸浆漂白成本的在线预测,也是实现纸浆漂白系统全局优化、进一步降低漂白成本的基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号