首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2510篇
  免费   203篇
  国内免费   192篇
电工技术   79篇
综合类   341篇
化学工业   19篇
金属工艺   244篇
机械仪表   949篇
建筑科学   9篇
矿业工程   66篇
能源动力   2篇
轻工业   41篇
水利工程   1篇
石油天然气   6篇
武器工业   32篇
无线电   77篇
一般工业技术   133篇
冶金工业   22篇
原子能技术   9篇
自动化技术   875篇
  2024年   5篇
  2023年   53篇
  2022年   86篇
  2021年   101篇
  2020年   89篇
  2019年   71篇
  2018年   72篇
  2017年   100篇
  2016年   88篇
  2015年   79篇
  2014年   178篇
  2013年   140篇
  2012年   161篇
  2011年   186篇
  2010年   114篇
  2009年   146篇
  2008年   97篇
  2007年   165篇
  2006年   156篇
  2005年   128篇
  2004年   102篇
  2003年   90篇
  2002年   80篇
  2001年   77篇
  2000年   52篇
  1999年   47篇
  1998年   31篇
  1997年   46篇
  1996年   18篇
  1995年   33篇
  1994年   27篇
  1993年   17篇
  1992年   21篇
  1991年   10篇
  1990年   14篇
  1989年   8篇
  1988年   15篇
  1982年   1篇
  1980年   1篇
排序方式: 共有2905条查询结果,搜索用时 15 毫秒
1.
This paper presents an underactuated mobile manipulator (UMM) and focuses on solving modeling, tracking, and vibration- and balance-control problems. Although the study has been directed at warehousing applications, the developed techniques are general and can be applied to other applications. The derivation of equations of motion of the UMM, disturbance analysis, and model validation are investigated to reveal the actual system dynamics. Additionally, a simple but effective strategy is also developed to solve the equilibrium point and balance problem. Based on the dynamic model, two control architectures are proposed: Model Predictive Control (MPC) and MPC+Proportional-Integral (PI) with integral actions, respectively, and they can also be applied to other robotic systems. Compared to other MPC-based control strategies, the proposed controllers require less effort to implement in practice. Finally, simulations, experiments, and robustness verification are conducted and discussed, and the results are satisfactory.  相似文献   
2.
Excavators are used for a wide range of applications like earthworks and material handling. Assistance systems are becoming more common to support the operator. For monitoring and control based assistance functions the angular position, velocity and acceleration of the joints from the working implement are required. Commercial systems often use inertial measurement units, consisting of triaxial accelerometers and gyroscopes, to accomplish an estimation of those states. A novel joint angle, velocity and acceleration estimation for hydraulic manipulators is proposed and compared to state of the art methods. A decentralized kinematic filter using no information about the underlying system and a centralized kinematic filter taking the system kinematics into account are implemented as state of the art approaches. Both filters only use inertial measurement units to obtain information about the current state of the system. The novel centralized dynamic filter uses the same information as the centralized kinematic filter and extends it by a dynamic model containing additional information about the angular acceleration due to pressure readings of the hydraulic cylinders. Kalman filtering is used to combine the derived system and measurement models with the sensor information. The methods are evaluated on a material handling excavator for single and coupled movements of the working implement. The novel centralized dynamic filter enables improvements for the angular acceleration estimation compared to the decentralized and centralized kinematic filter. Less noise of the acceleration estimation and a better tracking of the actual acceleration are shown.  相似文献   
3.
This study proposes an adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators. A transformation with respect to tracking error using certain performance functions is used to ensure the transient and steady-state performances of the trajectory tracking control for robotic manipulators. Using the transformed error, a nonsingular terminal sliding mode surface is proposed. A continuous terminal sliding mode control (SMC) is presented to stabilize the system. To compensate for the uncertainty and external disturbance, a novel sliding mode disturbance observer is proposed. Considering the unknown boundary of the derivative of a lumped disturbance, an adaptive law based on the idea of equivalent control is designed. Combining the adaptive law, continuous nonsingular terminal SMC, and sliding mode disturbance observer, the adaptive sliding mode disturbance rejection control with prescribed performance is developed. Simulations are carried out to demonstrate the effectiveness of the proposed approach.  相似文献   
4.
苏宇  张吉  王沁 《机械与电子》2020,38(3):66-71
设计了一款四功能水下机械臂,并对驱动关节进行了模块化设计和密封测试。为了保证水下机械臂的可靠性,在水下机械臂水下测试前,进行了强度校核和模态分析。为了验证水下机械臂的性能,通过 D- H法建立了其运动学模型,在此基础上分别进行了正、逆运动学分析。此外还采用蒙特卡洛法,在正运动学分析的基础上研究了工作空间特点。研究结果将为进一步的运动控制提供有益的帮助。  相似文献   
5.
This article develops a new framework of adaptive actuator failure compensation control for cooperative manipulator systems with parameter uncertainties in addition to actuator failures, and designs and analyzes effective actuator failure compensation schemes for such robotic systems. The new adaptive control design uses an integration of multiple individual failure compensators and direct adaptation to handle various types of uncertainties in such robotic systems. The design can also be used for concurrent actuator failure cases, to expand the capability of adaptive actuator failure compensation. With a complete proof and performance analysis, it is shown that the proposed control scheme guarantees the desired closed-loop stability and asymptotic output tracking, despite actuator failures whose patterns, time instants and values are all unknown. Simulation results of a benchmark cooperative manipulator system are presented to verify the desired control performance of the system with both typical constant and square-wave actuator failure signals.  相似文献   
6.
In this article, based on partial differential equations (PDEs), the flexible manipulator system with both dead-zone input and state constraints is studied. The dynamic model of the flexible manipulator system is described by PDEs. The parameters of the dead-zone input are unknown, and the state constraint problem is also considered. An adaptive approach is proposed to offset the effects caused by dead-zone input. Thus, to guarantee that all states remain within their respective constraint regions, the boundary control law based on the barrier Lyapunov function is given, and an adaptive controller is designed. According to the Lyapunov analysis method, the control method is given to ensure that all signals of the closed-loop system are bounded and all states satisfy the constraint conditions. Finally, simulation results show the effectiveness of the proposed control method in this article.  相似文献   
7.
The controller design for the robotic manipulator faces different challenges such as the system's nonlinearities and the uncertainties of the parameters. Furthermore, the tracking of different linear and nonlinear trajectories represents a vital role by the manipulator. This paper suggests an optimal design for the nonlinear model predictive control (NLMPC) based on a new improved intelligent technique and it is named modified multitracker optimization algorithm (MMTOA). The proposed modification of the MTOA is carried out based on opposition-based learning (OBL) and quasi OBL approaches. This modification improves the exploration behavior of the MTOA to prevent it from becoming trapped in a local optimum. The proposed method is applied on the robotic manipulator to track different linear and nonlinear trajectories. The NLMPC parameters are tuned by the MMTOA rather than the trial and error method of the designer. The proposed NLMPC based on MMTOA is compared with the original MTOA, genetic algorithm, and cuckoo search algorithm in literature. The superiority and effectiveness of the proposed controller are confirmed to track different linear and nonlinear trajectories. Furthermore, the robustness of the proposed method is emphasized against the uncertainties of the parameters.  相似文献   
8.
The parallel spindle heads with high rotational capability are demanded in the area of multi-axis machine tools and 3D printers. This paper focuses on designing a class of 2R1T (R: Rotation; T: Translation) parallel spindle heads and the corresponding collaborative 5-axis manipulators with 2-dimension (2D) large rotational angles. In order to construct 2D rotational degrees of freedom (DOFs), a platform with 2D revolute joints is proposed first. Based on the constraint screw theory, the feasible limbs that can be connected in the platform are synthesized. In order to provide constant rotational axis for the platform, a class of redundant limbs are designed. A class of redundant 2R1T parallel spindle heads is obtained by connecting the redundant limbs with the platform and the redundant characteristics are verified by the modified Grübler-Kutzbach criterion. The corresponding 5-axis collaborative manipulators are presented by constructing a 2-DOF series translational bottom moving platform. The inverse kinematics and the orientation workspace as well as the decoupling characteristics of this type of 2R1T parallel spindle heads are analyzed. The results show that these manipulators have large 2D rotational angles than the traditional A3/Z3 heads and can be potentially used in the application of multi-axis machine tools and the 3D printers.  相似文献   
9.
This study focuses on the accurate tracking control and sensorless estimation of external force disturbances on robot manipulators. The proposed approach is based on an adaptive Wavelet Neural Network (WNN), named Adaptive Force-Environment Estimator (WNN-AFEE). Unlike disturbance observers, WNN_AFEE does not require the inverse of the Jacobian transpose for computing the force, thus, it has no computational problem near singular points. In this scheme, WNN estimates the external force disturbance to attenuate its effects on the control system performance by estimating the environment model. A Lyapunov based design is presented to determine adaptive laws for tuning WNN parameters. Another advantage of the proposed approach is that it can estimate the force even when there are some parametric uncertainties in the robot model, because an additional adaptive law is designed to estimate the robot parameters. In a theorem, the stability of the closed loop system is proved and a general condition is presented for identifying the force and robot parameters. Some suggestions are provided for improving the estimation and control performance. Then, a WNN-AFEE is designed for a planar manipulator as an example, and some simulations are performed for different conditions. WNN_AFEE results are compared attentively with the results of an adaptive force estimator and a disturbance estimator. These comparisons show the efficiency of the proposed controller in dealing with different conditions.  相似文献   
10.
基于传统易碎薄板机械手位置伺服控制系统稳定性低、自动化分拣效率低等不足,设计了一种基于笛卡尔坐标式的气动码垛机器手和位置伺服稳定性控制系统。首先,设计并介绍笛卡尔坐标式码垛机械手的基本组成结构,对机械手末端吸盘气动回路控制系统进行设计和分析;然后分别对机械手X、Y、Z三个方向的伺服电机控制原理进行分析并设计了一种位置伺服系统的前馈自适应控制算法;最后,将传统位置闭环PID算法和前馈自适应控制算法进行位置跟踪稳定性对比试验。实验结果表明该笛卡尔坐标式的气动码垛机器手和位置伺服稳定性控制系统设计合理,满足实际生产要求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号