首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   3篇
  自动化技术   3篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
蒋亦樟  邓赵红  王骏  钱鹏江  王士同 《软件学报》2014,25(10):2293-2311
当前,基于协同学习机制的多视角聚类技术存在如下两点不足:第一,以往构造的用于各视角协同学习的逼近准则物理含义不明确且控制简单;第二,以往算法均默认各视角的重要性程度是相等的,缺少各视角重要性自适应调整的能力。针对上述不足:首先,基于具有良好物理解释性的Havrda-Charvat熵构造了一个全新的异视角空间划分逼近准则,该准则能有效地控制异视角间的空间划分相似程度;其次,基于香农熵理论提出了多视角自适应加权策略,可有效地控制各视角的重要性程度,提高算法的聚类性能;最后,基于FCM框架提出了熵加权多视角协同划分模糊聚类算法(entropy weight-collaborative partition-multi-view fuzzy clustering algorithm,简称EW-CoP-MVFCM)。在模拟数据集以及 UCI 数据集上的实验结果均显示,所提算法较之已有多视角聚类算法在应对多视角聚类任务时具有更好的适应性。  相似文献
2.
近年来,随着各种网络应用平台愈演愈烈,多种关系网络中用户之间往往存在大量相似的局部社区结构. 鉴于传统单视角社区发现算法在划分时无法同时考虑多种因素,本文将在多视角原理上提出一种基于局部协同选择聚类的多视角社区发现模型,该模型中主要解决了传统多视角聚类算法的条件限制问题(节点,聚类个数和充分的属性信息)和过度调整问题. 首先,构建选择调节矩阵来训练各视角中的共同部分节点集,并集成其共同节点的社团结构,然后,构建局部优化矩阵将共同节点结构做为训练集,利用核岭回归(KRR)原理完成各视角中孤立节点的划分,最后通过UCI数据集和DBLP数据集来分别验证聚类精度和算法适用性.  相似文献
3.
邓强  杨燕  王浩 《计算机科学》2017,44(1):65-70
近年来,针对大数据的数据挖掘技术和机器学习算法研究变得日趋重要。在聚类领域,随着多视图数据的大量出现,多视图聚类已经成为了一类重要的聚类方法。然而,大多数现有的多视图聚类算法受算法参数设置、数据样本等影响,具有聚类结果不稳定、参数需要反复调节等缺点。基于多视图K-means算法和聚类集成技术,提出了一种改进的多视图聚类集成算法,其提高了聚类的准确性、鲁棒性和稳定性。其次,由于单机环境下的多视图聚类算法难以对海量的数据进行处理,结合分布式处理技术,实现了一种分布式的多视图并行聚类算法。实验证明,并行算法在处理大数据时的时间效率有很大提升,适合于大数据环境下的多视图聚类分析。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号