首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  自动化技术   1篇
  2018年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
吴信东  嵇圣硙 《软件学报》2018,29(6):1770-1791
随着大数据时代的到来,海量数据的分析与处理已成为一个关键的计算问题.本文评述了MapReduce与Spark两种大数据计算算法和架构,从背景、原理以及应用场景进行分析和比较,并对两种算法各自优点以及相应的限制做出了总结.当处理非迭代问题时,MapReduce凭借其自身的任务调度策略和shuffle机制,在中间数据传输数量以及文件数目方面性能要优于Spark;而在处理迭代问题和一些低延迟问题时,Spark可以根据数据之间的依赖关系对任务进行更合理的划分,相较于MapReduce有效地减少中间数据传输数量与同步次数,提高系统的运行效率.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号