首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  国内免费   7篇
  完全免费   102篇
  自动化技术   209篇
  2018年   1篇
  2017年   5篇
  2016年   5篇
  2015年   11篇
  2014年   16篇
  2013年   11篇
  2012年   17篇
  2011年   13篇
  2010年   21篇
  2009年   21篇
  2008年   25篇
  2007年   22篇
  2006年   9篇
  2005年   15篇
  2004年   8篇
  2003年   7篇
  2002年   1篇
  1992年   1篇
排序方式: 共有209条查询结果,搜索用时 31 毫秒
1.
Support Vector Data Description   总被引:23,自引:0,他引:23  
2.
离群数据挖掘综述*   总被引:16,自引:1,他引:15       下载免费PDF全文
通过对当前有代表性的离群数据挖掘算法的分析和比较,总结了各算法的特性及优缺点,为使用者选择、学习、改进算法提供了依据。此外,针对高维数据和空间数据中离群检测的特殊性,在现有算法的基础上,分析了高维数据和空间数据离群检测需要注意的一些问题,以便于研究者提出新的有效的算法。  相似文献
3.
基于距离的孤立点检测及其应用   总被引:15,自引:2,他引:13  
孤立点检测是一个有趣的知识发现任务,文章介绍了基于距离的孤立点检测及其相关概念,分析了几种有代表性的算法。最后,文章给出了一个判定孤立点的新的定义,并按此定义进行了检测算法,用实际数据进行了实验。实验结果表明,新的定义不仅与DB(p,d)孤立点定义有着相同的结果,而且简化了孤立点检测对用户的需求,同时给出了数据对象在数据集中的孤立程度。  相似文献
4.
GridOF:面向大规模数据集的高效离群点检测算法   总被引:14,自引:3,他引:11  
作为数据库知识发现研究的重要技术手段,现有离群点检测算法在运用于大型数据集时其时间与空间效率均无法令人满意.通过对数据集中离群点分布特征的分析,在数据空间网格划分的基础上,研究数据超方格层次上的密度近似计算与稠密数据主体滤除策略.给出通过简单的修正近似计算取代繁复的点对点密度函数值计算的方法.基于上述思想构造的离群点检测算法GlidOF在保持足够检测精度的同时显著降低了时空复杂度,运用于大规模数据集离群点检测具有良好的适用性和有效性.  相似文献
5.
基于距离的孤立点检测研究   总被引:14,自引:0,他引:14  
孤立点检测是一个重要的知识发现任务,在分析基于距离的孤立点及其检测算法的基础上,文章提出了一个判定孤立点的新定义,并设计了基于抽样的近似检测算法,用实际数据进行了实验。实验结果表明,新的定义不仅与DB(p,d)孤立点定义有着相同的结果,而且简化了孤立点检测对用户的要求,同时给出了数据对象在数据集中的孤立程度。  相似文献
6.
IncLOF:动态环境下局部异常的增量挖掘算法   总被引:13,自引:1,他引:12  
异常检测是数据挖掘领域研究的最基本的问题之一,它在欺诈甄别、贷款审批、气象预报、客户分类等方面有广泛的应用,以前的异常检测算法只适应于静态环境,在数据更新时需要进行重新计算,在基于密度的局部异常检测算法LOF的基础上,提出一种在动态环境下局部异常挖掘的增量算法IncLOF,当数据库中的数据更新时,只对受到影响的点进行重新计算,这样可以大大提高异常的挖掘速度,实验表明,在动态环境下IncLOF的运行时间远远小于LOF的运行时间,并且用户定义的邻域中的最小对象个数与记录数之比越小,效果越明显.  相似文献
7.
基于k均值分区的数据流离群点检测算法   总被引:10,自引:0,他引:10  
离群知识发现是数据挖掘研究的一个重要方面,数据流离群点挖掘更因其挖掘对象具有动态性、不可复读性、数据量大等特点而成为离群知识发现研究的一个难点.提出一种基于k均值分区的流数据离群点发现算法,先对数据流进行分区做k均值聚类生成中间聚类结果(均值参考点集),随后在这些均值参考点中,根据离群点的定义找出可能存在的离群点.理论分析和实验结果表明,算法可以有效解决数据流离群点检测问题,算法是有效可行的.  相似文献
8.
局部离群点挖掘算法研究   总被引:9,自引:0,他引:9  
离群点可分为全局离群点和局部离群点.在很多情况下,局部离群点的挖掘比全局离群点的挖掘更有意义.现有的基于局部离群度的离群点挖掘算法存在检测精度依赖于用户给定的参数、计算复杂度高等局限.文中提出将对象属性分为固有属性和环境属性,用环境属性确定对象邻域、固有属性计算离群度的方法克服上述局限;并以空间数据为例,将空间属性与非空间属性分开,用空间属性确定空间邻域,用非空间属性计算空间离群度,设计了空间离群点挖掘算法.实验结果表明,所提算法具有对用户依赖性少、检测精度高、可伸缩性强和运算效率高的优点.  相似文献
9.
An effective and efficient algorithm for high-dimensional outlier detection   总被引:7,自引:0,他引:7  
The outlier detection problem has important applications in the field of fraud detection, network robustness analysis, and intrusion detection. Most such applications are most important for high-dimensional domains in which the data can contain hundreds of dimensions. Many recent algorithms have been proposed for outlier detection that use several concepts of proximity in order to find the outliers based on their relationship to the other points in the data. However, in high-dimensional space, the data are sparse and concepts using the notion of proximity fail to retain their effectiveness. In fact, the sparsity of high-dimensional data can be understood in a different way so as to imply that every point is an equally good outlier from the perspective of distance-based definitions. Consequently, for high-dimensional data, the notion of finding meaningful outliers becomes substantially more complex and nonobvious. In this paper, we discuss new techniques for outlier detection that find the outliers by studying the behavior of projections from the data set.Received: 19 November 2002, Accepted: 6 February 2004, Published online: 19 August 2004Edited by: R. Ng.  相似文献
10.
A Unified Approach to Detecting Spatial Outliers   总被引:7,自引:0,他引:7  
Spatial outliers represent locations which are significantly different from their neighborhoods even though they may not be significantly different from the entire population. Identification of spatial outliers can lead to the discovery of unexpected, interesting, and implicit knowledge, such as local instability. In this paper, we first provide a general definition of S-outliers for spatial outliers. This definition subsumes the traditional definitions of spatial outliers. Second, we characterize the computation structure of spatial outlier detection methods and present scalable algorithms. Third, we provide a cost model of the proposed algorithms. Finally, we experimentally evaluate our algorithms using a Minneapolis-St. Paul (Twin Cities) traffic data set.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号