首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10027篇
  免费   1725篇
  国内免费   546篇
电工技术   322篇
综合类   688篇
化学工业   1932篇
金属工艺   252篇
机械仪表   944篇
建筑科学   211篇
矿业工程   47篇
能源动力   137篇
轻工业   1712篇
水利工程   16篇
石油天然气   45篇
武器工业   63篇
无线电   2325篇
一般工业技术   2783篇
冶金工业   61篇
原子能技术   8篇
自动化技术   752篇
  2024年   31篇
  2023年   404篇
  2022年   351篇
  2021年   594篇
  2020年   600篇
  2019年   526篇
  2018年   495篇
  2017年   544篇
  2016年   504篇
  2015年   503篇
  2014年   565篇
  2013年   580篇
  2012年   602篇
  2011年   718篇
  2010年   472篇
  2009年   509篇
  2008年   450篇
  2007年   633篇
  2006年   619篇
  2005年   541篇
  2004年   411篇
  2003年   304篇
  2002年   241篇
  2001年   211篇
  2000年   208篇
  1999年   158篇
  1998年   110篇
  1997年   64篇
  1996年   71篇
  1995年   59篇
  1994年   55篇
  1993年   47篇
  1992年   35篇
  1991年   23篇
  1990年   10篇
  1989年   17篇
  1988年   7篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
1.
Novel inks were formulated by dissolving polycaprolactone (PCL), a hydrophobic polymer, in organic solvent systems; polyethylene oxide (PEO) was incorporated to extend the range of hydrophilicity of the system. Hydroxyapatite (HAp) with a weight ratio of 55–85% was added to the polymer-based solution to mimic the material composition of natural bone tissue. The direct ink writing (DIW) technique was applied to extrude the formulated inks to fabricate the predesigned tissue scaffold structures; the influence of HAp concentration was investigated. The results indicate that in comparison to other inks containing HAp (55%, 75%, and 85%w/w), the ink containing 65% w/w HAp had faster ink recovery behavior; the fabricated scaffold had a rougher surface as well as better mechanical properties and wettability. It is noted that the 65% w/w HAp concentration is similar to the inorganic composition of natural bone tissue. The elastic modulus values of PCL/PEO/HAp scaffolds were in the range of 4–12 MPa; the values were dependent on the HAp concentration. Furthermore, vancomycin as a model drug was successfully encapsulated in the PCL/PEO/HAp composite scaffold for drug release applications. This paper presents novel drug-loaded PCL/PEO/HAp inks for 3D scaffold fabrication using the DIW printing technique for potential bone scaffold applications.  相似文献   
2.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
3.
本文介绍了混凝土结构的压电体波和表面波检测的主要进展,对两种压电声波检测的优缺点进行了总结。体波检测设备一般埋入混凝土内部,需要选择合理的检测部位,检测结果较为精确;声表面波检测无需选择特定的部位,但是检测深度有限。在实际检测工作过程中,可以联合两种方法相互验证。  相似文献   
4.
5.
Ternary 0.552Pb(Ni1/3Nb2/3)O3-xPbZrO3-(0.448-x)PbTiO3 (PNN-PZ-PT) ceramics near the triple point compositions were fabricated by an improved two-step sintering method. The triple point composition 0.552PNN-0.135PZ-0.313PT ceramic has outstanding piezoelectric performance with piezoelectric coefficient d33 = 1200 pC/N. Its easy fabrication and low cost make this piezoelectric material an excellent candidate for high sensitivity sensors and ultrasonic transducers. The evolution of domain structures for ceramics with composition near the triple point provides deeper insight into the mechanism of ultrahigh piezoelectric properties of PNN-PZ-PT ceramics.  相似文献   
6.
Ca3Co4O9 is a promising p-type thermoelectric oxide material having intrinsically low thermal conductivity. With low cost and opportunities for automatic large scale production, thick film technologies offer considerable potential for a new generation of micro-sized thermoelectric coolers or generators. Here, based on the chemical composition optimized by traditional solid state reaction for bulk samples, we present a viable approach to modulating the electrical transport properties of screen-printed calcium cobaltite thick films through control of the microstructural evolution by optimized heat-treatment. XRD and TEM analysis confirmed the formation of high-quality calcium cobaltite grains. By creating 2.0 at% cobalt deficiency in Ca2.7Bi0.3Co4O9+δ, the pressureless sintered ceramics reached the highest power factor of 98.0 μWm?1 K-2 at 823 K, through enhancement of electrical conductivity by reduction of poorly conducting secondary phases. Subsequently, textured thick films of Ca2.7Bi0.3Co3.92O9+δ were efficiently tailored by controlling the sintering temperature and holding time. Optimized Ca2.7Bi0.3Co3.92O9+δ thick films sintered at 1203 K for 8 h exhibited the maximum power factor of 55.5 μWm?1 K-2 at 673 K through microstructure control.  相似文献   
7.
Tissue engineering requires the precise positioning of mammalian cells and biomaterials on substrate surfaces or in preprocessed scaffolds. Although the development of 2D and 3D bioprinting technologies has made substantial progress in recent years, precise, cell-friendly, easy to use, and fast technologies for selecting and positioning mammalian cells with single cell precision are still in need. A new laser-based bioprinting approach is therefore presented, which allows the selection of individual cells from complex cell mixtures based on morphology or fluorescence and their transfer onto a 2D target substrate or a preprocessed 3D scaffold with single cell precision and high cell viability (93–99% cell survival, depending on cell type and substrate). In addition to precise cell positioning, this approach can also be used for the generation of 3D structures by transferring and depositing multiple hydrogel droplets. By further automating and combining this approach with other 3D printing technologies, such as two-photon stereolithography, it has a high potential of becoming a fast and versatile technology for the 2D and 3D bioprinting of mammalian cells with single cell resolution.  相似文献   
8.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
9.
The structure and properties of Mn-doped 0.67BiFeO3-0.33BaTiO3 ceramics are systematically investigated with respect to the effects of annealing prior to rapid cooling by quenching in air. Air-quenching induces a change in crystal structure from pseudo-cubic to rhombohedral, with higher quenching temperatures leading to an increased rhombohedral distortion. These structural changes are correlated with the appearance of more well-defined ferroelectric domain configurations. It is shown that the surface preparation procedures for XRD measurements can induce significant changes in the peak profiles, indicating differences in crystal structure between the surface and bulk regions. Frequency dispersion in the temperature-dependent relative permittivity for the as-sintered sample is significantly reduced after quenching, accompanied by enhancement of the Curie point and improved temperature-stability of piezoelectric properties. It is proposed that the formation of defect clusters by A-site cation diffusion during cooling is circumvented by quenching, leading to the observed modification of structural distortion and ferroelectric properties.  相似文献   
10.
《Ceramics International》2022,48(10):14301-14306
Recently, the progress of electronic devices toward miniaturization has strongly promoted development of multifunctional materials possessing multiple desirable properties. In this study, we develop and fabricate 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr multifunctional ceramics which show simultaneously considerable electric-field-induced strain and bright green light emission properties. With the introduction of Er3+, the ceramics gradually transform from non-ergodic relaxor phase to ergodic relaxor phase which could reversibly transform to ferroelectric phase under the electric field. As a result, with improving Er3+ content, the shape of the polarization-electric field loops of the ceramics become pinched, and it is obvious that the negative strain disappears while the positive strain gradually increases and reaches a maximum value 0.46% at x = 1.2 mol%. Besides, After the ceramics are poled, the light emission peak are greatly enhanced attributed to the decreased crystal symmetry and increased domain size, and is the strongest at x = 1.2 mol%. These results indicate that 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr ceramics are good candidates for developing multifunctional optoelectronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号