首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   105篇
  国内免费   73篇
电工技术   24篇
综合类   39篇
化学工业   116篇
金属工艺   19篇
机械仪表   29篇
建筑科学   13篇
矿业工程   6篇
能源动力   54篇
轻工业   105篇
石油天然气   17篇
无线电   266篇
一般工业技术   157篇
冶金工业   15篇
原子能技术   33篇
自动化技术   63篇
  2024年   1篇
  2023年   18篇
  2022年   11篇
  2021年   45篇
  2020年   47篇
  2019年   41篇
  2018年   21篇
  2017年   36篇
  2016年   39篇
  2015年   46篇
  2014年   54篇
  2013年   47篇
  2012年   52篇
  2011年   60篇
  2010年   46篇
  2009年   27篇
  2008年   42篇
  2007年   39篇
  2006年   37篇
  2005年   18篇
  2004年   29篇
  2003年   22篇
  2002年   22篇
  2001年   22篇
  2000年   18篇
  1999年   11篇
  1998年   16篇
  1997年   8篇
  1996年   10篇
  1995年   12篇
  1994年   10篇
  1993年   8篇
  1992年   6篇
  1991年   6篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1975年   4篇
排序方式: 共有956条查询结果,搜索用时 15 毫秒
1.
The photocatalytic evolution of H2 over La2O3 decorated TiO2 catalyst was examined under solar light. It was observed that during the course of the reaction, the transformation of La2O3/TiO2 into La2O3–TiO2–La2O2CO3 occurred and these species effectively suppressed electron-hole pair recombination by forming electron trapping centres on the surface, resulting in an increased visible light absorption and improved H2 yield. The 2 wt%La2O3/TiO2 nanocomposite demonstrated better H2 yield (~8.76 mmol (gcat)?1) than the bare TiO2 (~1.1 mmol (gcat)?1). The catalyst was stable even after several consecutive recycles with no substantial loss of hydrogen production rate. The H2 rates were correlated with the physicochemical characteristics of the catalysts examined by BET–SA, H2-TPR, XRD, UV-DRS, Raman spectroscopy, FTIR, HRTEM, EPR and PL spectroscopy.  相似文献   
2.
袁金桥 《现代矿业》2018,34(11):13-15
为解决南山矿下属集体企业面临的人员老化严重、生产装备落后、职工就业压力大等发展难题,探索了以资产整合、业务整合、人员整合和管理整合四位一体的资源整合重组新模式,扭转了企业经营困局,维护了矿区和谐稳定,促进了企业转型发展,对同类矿山具有良好的借鉴作用。   相似文献   
3.
《Ceramics International》2020,46(3):2630-2639
Cobalt ferrite-graphene nanoplatelets ((CFO)1-x(GNPs)x) nanocomposites are promising for efficient photocatalysis and high-performance supercapacitors. Multifunctional (CFO)1-x(GNPs)x nanocomposites prepared via facile chemical method have been investigated for their physio-chemical characteristics like crystal structure, morphology, chemical composition, optical properties, infrared vibrational modes, photocatalytic and supercapacitor applications. Interestingly, the photocatalytic activity of CFO nanostructures has been improved significantly from 38.3% to 98.7% with the addition of graphene which can be attributed to control over recombination of charge carriers. It is also found that the specific capacitance of the prepared (CFO)1-x(GNPs)x nanocomposite electrode at 0.5 Ag-1 is three times higher than that of only CFO based electrode which could be due to the conducting nature of graphene nanoplatelets (GNPs). The enhanced photocatalytic and improved electrochemical characteristics suggest the effective use of prepared nanocomposites in water purification and supercapacitor nanodevices.  相似文献   
4.
The high cost of noble metal catalysts has been a great bottleneck for the catalyst industry. Using the noble metal at a single-atom level for catalytic applications could dramatically decrease the cost. The impacts of single Pt atoms on the photocatalytic performance of Ag3VO4 have been investigated and reported. In this report, single Pt atoms were anchored on the surface of Ag3VO4 (AVO) as a cocatalyst, and the resultant composite photocatalyst has been studied for photocatalytic H2 production from water driven by visible light. The as-prepared AVO particles are hollow nanospheres in the monoclinic phase with a bandgap of 2.20 eV. The light absorption edge of AVO/Pt is slightly red-shifted compared to that of the pristine AVO, indicating more visible light absorption of AVO/Pt. The XPS peaks of Ag, V, and Pt exhibit a significant shift after AVO and Pt get into contact, suggesting the strong interaction between the surface Ag and V atoms, and single Pt atoms. After 3-h illumination, the photocatalytic H2 evolution amount from AVO/Pt is improved up to 1400 μmol, which is 2.8 times that on the bare AVO. Such efficient photocatalytic H2 evolution on AVO/Pt is still maintained after five reaction cycles. The better photocatalytic performance of AVO/Pt has been attributed to the more efficient visible light utilization and the lower interfacial charge transfer resistance, as demonstrated in the DRS and EIS spectra. The presence of the surface Pt atoms also leads to a higher amount of reactive radicals, which could efficiently promote the surface redox reactions.  相似文献   
5.
Charge transfer state (CT) plays an important role in exciton diffusion, dissociation, and charge recombination mechanisms. Enhancing the utilization and suppressing the recombination process of CT excitons is a promising way to improve the performance of organic solar cells (OSCs). Here, an effective method is presented via introducing a delayed fluorescence (DF) emitter 3,4‐bis(4‐(diphenylamino)phenyl)acenaphtho[1,2‐b]pyrazine‐8,9‐dicarbonitrile (APDC‐TPDA) in OSCs. The long‐lifetime singlet excitons on APDC‐TPDA can transfer to polymer donors to prolong exciton lifetime, which ensures sufficient time for diffusion and dissociation. Concurrently, the high triplet energy level (T1) of the DF material can also prevent the reverse energy transfer from CT to T1. APDC‐TPDA‐containing ternary OSCs shows a high PCE of 16.96% with a reduced recombination energy loss of 0.46 eV. It is noteworthy that the ternary OSC also exhibits superior storage stability. After 55 days of storage, the PCE of the ternary OSC still retains about 96% of its primitive state. Furthermore, this ternary strategy is efficient and universally applicable to OSCs, and positive results can be obtained in different systems with different DF emitters. These results indicate that the ternary strategy provides a new design idea to realize high performance OSCs.  相似文献   
6.
《Advanced Powder Technology》2020,31(12):4585-4597
Focussing on visible light active ferrites for high performance removal of noxious pollutants, we report the synthesis of Mg0.5NixZn0.5-xFe2O4 (x = 0.1, 0.2, 0.3, 0.4, & 0.5) ferrite nanoparticle for degradation of reactive blue-19 (RB-19). Lattice parameters calculated using intense X-ray diffraction (XRD) peaks and Nelson-Riley plots (N-R plot) are in well agreement with each other. The sample Mg0.5Ni0.4Zn0.1Fe2O4 (M5N4) exhibits best performance with 99.5% RB-19 degradation in 90 min under visible light. Photoluminescence (PL) results confirm that recombination of charge carriers is highly reduced in the photocatalyst. Scavenging experiments suggest that O2 radicals were the dominant species responsible for photocatalytic performance. The photocatalytic mechanism was explained in terms of dopant driven shifting of conduction bands and valence bands (calculated by Mott-Schottky plots). The thermodynamic probability of radical generation along with role of redox cycles of metal ions has been discussed in the mechanism. The dye degradation was ascertained by detection of intermediates via mass spectrometry analysis and a possible degradation route was also predicted. The findings in this work provide intriguing opportunities to modify the electronic band structure of spinel ferrites for visible and solar light photocatalytic activity for environmental detoxification.  相似文献   
7.
Inactivation of the retinoblastoma tumor suppressor gene (RB1) leads to genome instability, and can be detected in retinoblastoma and other cancers. One damaging effect is causing DNA double strand breaks (DSB), which, however, can be repaired by homologous recombination (HR), classical non-homologous end joining (C-NHEJ), and micro-homology mediated end joining (MMEJ). We aimed to study the mechanistic roles of RB in regulating multiple DSB repair pathways. Here we show that HR and C-NHEJ are decreased, but MMEJ is elevated in RB-depleted cells. After inducing DSB by camptothecin, RB co-localizes with CtIP, which regulates DSB end resection. RB depletion leads to less RPA and native BrdU foci, which implies less end resection. In RB-depleted cells, less CtIP foci, and a lack of phosphorylation on CtIP Thr847, are observed. According to the synthetic lethality principle, based on the altered DSB repair pathway choice, after inducing DSBs by camptothecin, RB depleted cells are more sensitive to co-treatment with camptothecin and MMEJ blocker poly-ADP ribose polymerase 1 (PARP1) inhibitor. We propose a model whereby RB can regulate DSB repair pathway choice by mediating the CtIP dependent DNA end resection. The use of PARP1 inhibitor could potentially improve treatment outcomes for RB-deficient cancers.  相似文献   
8.
目的真核表达重组人淋巴细胞活化基因-3(lymphocyte activation gene-3,LAG-3)蛋白胞外段,并进行鉴定。方法用植物血球凝集素(phytohaemagg lutinin,PHA)刺激Jurkat细胞,流式细胞术检测Jurkat细胞中LAG-3蛋白的表达;提取Jurkat细胞总mRNA,RT-PCR法扩增人LAG-3蛋白胞外段基因片段,同时在蛋白C-末端引入His标签,将其克隆入载体pcDNA3. 1+,构建重组质粒,转染Expi293F真核细胞,当细胞活率低于50%时收获细胞上清,经镍柱亲合层析纯化。纯化产物进行4%~20%SDS-PAGE、HPLC及Western blot分析,BCA法测定浓度。结果经菌液PCR、双酶切及测序鉴定,表明质粒构建正确。重组表达蛋白的相对分子质量约60 000,纯化后纯度达95%以上,与鼠抗LAG-3单克隆抗体可发生特异性结合,浓度为2. 4 mg/mL。结论成功构建了重组真核表达质粒LAG-3/pcDNA3. 1+,并于Expi293F细胞中表达,纯化获得了纯度较高的LAG-3蛋白,为后期LAG-3蛋白的相关研究及其单抗的制备奠定了基础。  相似文献   
9.
《Ceramics International》2020,46(13):20788-20797
In this work, BiVO4 composites, containing the tetragonal zircon phase (tz-BiVO4), and monoclinic scheelite phase (ms-BiVO4), were synthesized using the microemulsion method. The effect of pH on phase composition and photocatalytic activity were investigated. Based on X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), a ms/tz-BiVO4 composite forms at pH = 1.0 and pure ms-BiVO4 is obtained in the pH range 4.0–10.0. The three primary steps in preparing BiVO4 were monitored by optical microscopy and the role played by the microemulsion on the phase composition of BiVO4 is explained. Photoluminescence spectroscopy (PL), UV–visible diffuse reflectance spectroscopy (UV-DRS), Brunauer-Emmett-Teller (BET), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) were employed to characterize the physical and chemical properties of BiVO4 composites. The composite formed at pH = 1 exhibited the lowest hole-electron (h+-e-) recombination rate, resulting in the highest photocatalytic activity towards microcystin-LR (MC-LR), with near 100% removal of MC-LR in 5 h. ESR and trapping experiments indicated that MC-LR degradation was mediated primarily by hydroxyl radicals (•OH), superoxide radicals (O2•−) and photogenerated holes (h+).  相似文献   
10.
The presence of traps in organic semiconductor based electronic devices affects considerably their performances and their stability. The Shockley-Read-Hall (SRH) model is generally used to extract the trap parameters from the experimental results. In this paper, we propose to adapt the SRH formalism to disordered organic semiconductors by considering a hopping transport process and Gaussian distributions for both mobile and trapped carriers. The model is used to extract multiple trap parameters from charge based Deep Level Transient Spectroscopy (Q-DLTS) spectrum. Calculation of the charge transients are given in detail. The model predicts that the activation energy of the trap should not follow an Arrhenius plot on large temperature ranges. Also, the charge transients are no longer exponential when considering Gaussian trap distributions, enlarging the Q-DLTS peaks. The model fits the Q-DLTS spectra measured on organic diodes with a limited number of trap contributions with a good agreement. It is found that an increase of the material rate of disorder reduces the extracted trap energy distances to the LUMO but has no influence on the extracted trap distribution widths. This work shows the importance of considering the specific properties of organic materials to study their properties and their trap distributions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号