首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32536篇
  免费   3795篇
  国内免费   2184篇
电工技术   3716篇
技术理论   4篇
综合类   3124篇
化学工业   4118篇
金属工艺   841篇
机械仪表   1337篇
建筑科学   2686篇
矿业工程   1928篇
能源动力   1758篇
轻工业   1332篇
水利工程   447篇
石油天然气   4058篇
武器工业   253篇
无线电   2321篇
一般工业技术   2028篇
冶金工业   2565篇
原子能技术   185篇
自动化技术   5814篇
  2024年   85篇
  2023年   580篇
  2022年   961篇
  2021年   1262篇
  2020年   1256篇
  2019年   1000篇
  2018年   927篇
  2017年   1134篇
  2016年   1311篇
  2015年   1346篇
  2014年   2398篇
  2013年   2232篇
  2012年   2633篇
  2011年   2670篇
  2010年   1995篇
  2009年   1899篇
  2008年   1739篇
  2007年   1989篇
  2006年   1955篇
  2005年   1610篇
  2004年   1351篇
  2003年   1205篇
  2002年   1027篇
  2001年   821篇
  2000年   656篇
  1999年   497篇
  1998年   372篇
  1997年   288篇
  1996年   264篇
  1995年   263篇
  1994年   172篇
  1993年   129篇
  1992年   99篇
  1991年   73篇
  1990年   70篇
  1989年   52篇
  1988年   27篇
  1987年   31篇
  1986年   24篇
  1985年   16篇
  1984年   17篇
  1983年   10篇
  1982年   14篇
  1981年   6篇
  1980年   7篇
  1979年   5篇
  1977年   6篇
  1974年   3篇
  1962年   3篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In recent years, artificial intelligence (AI) is being increasingly utilised in disaster management activities. The public is engaged with AI in various ways in these activities. For instance, crowdsourcing applications developed for disaster management to handle the tasks of collecting data through social media platforms, and increasing disaster awareness through serious gaming applications. Nonetheless, there are limited empirical investigations and understanding on public perceptions concerning AI for disaster management. Bridging this knowledge gap is the justification for this paper. The methodological approach adopted involved: Initially, collecting data through an online survey from residents (n = 605) of three major Australian cities; Then, analysis of the data using statistical modelling. The analysis results revealed that: (a) Younger generations have a greater appreciation of opportunities created by AI-driven applications for disaster management; (b) People with tertiary education have a greater understanding of the benefits of AI in managing the pre- and post-disaster phases, and; (c) Public sector administrative and safety workers, who play a vital role in managing disasters, place a greater value on the contributions by AI in disaster management. The study advocates relevant authorities to consider public perceptions in their efforts in integrating AI in disaster management.  相似文献   
2.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
3.
Recently, researchers have devoted more attention to supercapacitors (SCs) to integrate with batteries in energy storage systems (ESSs) for vehicle applications. In this study, we attempted to characterize the use of SCs in the ESS for a PEM fuel cell vehicle equipped with an alternator to maximize the performance of regenerative braking. We applied lithium-ion batteries (LIBs) and SCs as energy storage devices to examine their effect on ESS. Then we used a hysteresis brake to apply controllable braking force on the flywheel to form hybrid braking (HB) and made efforts to study its behavior to suggest a braking control strategy. We also ran the whole system over the rotational speed to cover the range of driving speed. At last, we sized the SCs for the most commonly used fuel cell electric vehicle (FCEV) in Korea, i.e., Hyundai NEXO, based on the results obtained from the above study by alternator efficiencies.  相似文献   
4.
Hydrogen-rich combustion in engines helps in reducing pollutants significantly. But hydrogen usage on a moving vehicle is not getting large-scale user acceptance mainly due to its poor energy storage density resulting in shorter driving ranges. This storage issue led to the hunt for mediums that can efficiently produce on-board hydrogen. Methanol proves to be an efficient alcohol fuel for producing hydrogen through steam reforming reaction. The heat energy required for such endothermic reaction is obtained through exhaust engine waste energy and this process is collectively known as thermochemical recuperation. However, the conventional reactor used for this process faces a lot of problems in terms of efficiency and methanol conversion. In this study, an attempt has been made to improve the design of the reactor for on-board hydrogen generation using engine exhaust heat for addressing the challenges related to performance and hydrogen yield. For enhancing the heat transfer, a finned surface (straight & wavy) was introduced in the reactor which resulted in an increment in methanol conversion significantly. It was found that wavy fin improved the methanol conversion up to 96.8% at an exhaust inlet temperature of 673 K. Also, a diffusing inlet section was introduced to increase the residence time of reactant gases while passing through the catalyst zone. Under given inlet conditions, the methanol conversion for 6° diffuse inlet reactor goes up to 87.9% as compared to 75.4% for the conventional reactor.  相似文献   
5.
The performance of Microbial electrolysis cell (MEC) is affected by several operating conditions. Therefore, in the present study, an optimization study was done to determine the working efficiency of MEC in terms of COD (chemical oxygen demand) removal, hydrogen and current generation. Optimization was carried out using a quadratic mathematical model of response surface methodology (RSM). Thirteen sets of experimental runs were performed to optimize the applied voltage and hydraulic retention time (HRT) of single chambered batch fed MEC operated with dairy industry wastewater. The operating conditions (i.e) an applied voltage of 0.8 V and HRT of 2 days that showed a maximum COD removal response was chosen for further studies. The MEC operated at optimized condition (HRT- 2 days and applied voltage- 0.8 V) showed a COD removal efficiency of 95 ± 2%, hydrogen generation of 32 ± 5 mL/L/d, Power density of 152 mW/cm2 and current generation of 19 mA. The results of the study implied that RSM, with its high degree of accuracy can be a reliable tool for optimizing the process of wastewater treatment. Also, dairy industry wastewater can be considered to be a potential source to generate hydrogen and energy through MEC at short HRT.  相似文献   
6.
This paper proposes a novel method combining Pinch Methodology and waste hydrogen recovery, aiming to minimise fresh hydrogen consumption and waste hydrogen discharge. The method of multiple-level resource Pinch Analysis is extended to the level of Total Site Hydrogen Integration by considering fresh hydrogen sources with various quality. Waste hydrogen after Total Site Integration is further regenerated. The technical feasibility and economy of the various purification approaches are considered, demonstrated with a case study of a refinery hydrogen network in a petrochemical industrial park. The results showed that fresh hydrogen usage and waste hydrogen discharge could be reduced by 21.3% and 67.6%. The hydrogen recovery ratio is 95.2%. It has significant economic benefits and a short payback period for Total Site Hydrogen Integration with waste hydrogen purification. The proposed method facilitates the reuse of waste hydrogen before the purification process that incurs an additional environmental footprint. In line with the Circular Economy principles, hydrogen resource is retained in the system as long as possible before discharge.  相似文献   
7.
《Ceramics International》2022,48(11):15252-15260
The Co3O4, as a potential anode of lithium-ion batteries, has gained considerable attention because of high theoretical capacity. However, the Co3O4 is suffering from serious structure deterioration and rapid capacity fading due to its bulky volume change during cyclic charge/discharge process. Herein, to stabilize the lithium storage performance of the Co3O4 nanoparticles, a characteristic carbon scaffold (HPC) integrating hollow and porous structures has been fabricated by a well-designed method for the first time. The ultrafine Co3O4 nanoparticles are cleverly anchored on the HPC (HPC@Co3O4) and hence achieve significantly improved electrochemical properties including high capacity, improved reaction kinetics and outstanding cycle stability, showing high capacity of 1084.7 mAh g-1 after 200 cycles at 200 mA g-1 as well as 681.4 mAh g-1 after 300 cycles at 1000 mA g-1. The HPC@Co3O4 therefore shows good promising for application in advanced lithium-ion battery anodes. The results of the systematically material and electrochemical characterizations indicate that the synergistic effects of ultrafine Co3O4 nanoparticles and well-designed HPC scaffolds are responsible for the outstand performance of the HPC@Co3O4 anode. Moreover, this work can enrich the understanding and development of stable and high-performance metal oxide-based lithium-ion battery anodes for advanced lithium storage.  相似文献   
8.
海上稠油热采开发过程中,通常采用蒸汽吞吐的方式进行原油开采。为满足稠油热采长效密封要求,研制了HPHT-215型热采防砂封隔器。封隔器胶筒采用特制的氟硅基复合材料+玻璃纤维网结构,并开展了材料性能评价测试。通过有限元分析和室内胶筒组合测试,对胶筒材料和组合结构进行了评价优化。室内全尺寸整机测试表明:封隔器能够满足耐温350 ℃、耐压21 MPa密封性能要求,并开展了高低温多轮次密封性能评价测试。该型热采防砂封隔器的研制成功,为海上稠油蒸汽吞吐多轮次开发提供了保障,具有广泛的应用前景。  相似文献   
9.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   
10.
互联网通讯采取标准化模式主要以TCP/IP协议为载体,通讯的优越特性体现在同时具备便捷性与开放性,为办公提供很大的便利,但基于网络系统也会入侵病毒、也会给信息数据与办公体系安全性造成威胁,直接影响企业综合稳定发展。据此,为保障办公工作的顺利开展,本文对计算机网络办公自动化及安全策略进行详细分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号