首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   1篇
  自动化技术   2篇
  2014年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
基于相对流形的局部线性嵌入   总被引:1,自引:0,他引:1       下载免费PDF全文
文贵华  陆庭辉  江丽君  文军 《软件学报》2009,20(9):3476-2386
局部线性嵌入算法极大地依赖于邻域是否真实地反映了流形的内在结构,现有方法构造的邻域结构是拓扑不稳定的,对噪音和稀疏数据敏感.根据认知的相对性规律提出了相对变换,并用其构造了相对空间和相对流形.相对变换可以提高数据之间的可区分性,并能抑制噪音和数据稀疏的影响.在构造的相对空间和相对流形上确定数据点的邻域能够更真实地反映流形的内在结构,由此提出了增强的局部线性嵌入算法,明显地提高了性能,特别是基于流形的方法还同时提高了速度.标准数据集上的实验结果验证了该方法的有效性.  相似文献
2.
A well-designed graph plays a fundamental role in graph-based semi-supervised learning; however, the topological structure of a constructed neighborhood is unstable in most current approaches, since they are very sensitive to the high dimensional, sparse and noisy data. This generally leads to dramatic performance degradation. To deal with this issue, we developed a relative manifold based semisupervised dimensionality reduction (RMSSDR) approach by utilizing the relative manifold to construct a better neighborhood graph with fewer short-circuit edges. Based on the relative cognitive law and manifold distance, a relative transformation is used to construct the relative space and the relative manifold. A relative transformation can improve the ability to distinguish between data points and reduce the impact of noise such that it may be more intuitive, and the relative manifold can more truly reflect the manifold structure since data sets commonly exist in a nonlinear structure. Specifically, RMSSDR makes full use of pairwise constraints that can define the edge weights of the neighborhood graph by minimizing the local reconstruction error and can preserve the global and local geometric structures of the data set. The experimental results on face data sets demonstrate that RMSSDR is better than the current state of the art comparing methods in both performance of classification and robustness.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号