首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   2篇
  自动化技术   2篇
  2020年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
预测与健康管理技术能够有效的评估系统健康状态、预测系统剩余使用寿命, 是提高复杂系统安全性、经济性的重要保障. 为全面评估系统健康状态, 本文提出了一种基于深度置信网络(DBN)的无监督健康指标构建方法, 并结合隐马尔可夫模型(HMM)进行系统剩余寿命预测. 首先, 通过无监督训练深度置信网络实现历史数据的特征提取, 进而构建健康指标; 其次, 利用健康指标集训练隐马尔可夫模型, 实现设备健康状态的自动识别; 最后, 通过DBN-HMM混合模型来计算系统剩余寿命. 采用商用模块化航空推进系统仿真软件(C-MAPSS) 给出的航空发动机数据集, 验证了上述方法的有效性.  相似文献
2.
研究了随机建模技术在锂电池剩余使用寿命预测中应用.基于此,使用Box-Jenkins ARIMA模型模拟锂电池退化过程.在NASA PCoE获取锂电池测量数据集,采用ADF单根检验与差分法对锂电池容量原始数据平稳化处理.结合自相关函数与偏自相关函数进行参数估计,构建多个ARIMA模型,并通过评估各种估计参数验证各个模型的有效性,根据AIC、SC准则与正态化BIC选择最佳预测模型.在对所选模型进行严格评估之后,ARIMA (2,1,2)被识别为最佳拟合模型.使用ARIMA模型获得了比较精确的预测结果,结果表明ARIMA模型预测锂电池剩余使用寿命短期内具有较高的精确度和较强的可行性.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号