首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8103篇
  免费   646篇
  国内免费   418篇
电工技术   509篇
技术理论   1篇
综合类   735篇
化学工业   664篇
金属工艺   386篇
机械仪表   543篇
建筑科学   617篇
矿业工程   297篇
能源动力   83篇
轻工业   144篇
水利工程   184篇
石油天然气   245篇
武器工业   94篇
无线电   871篇
一般工业技术   453篇
冶金工业   301篇
原子能技术   67篇
自动化技术   2973篇
  2024年   13篇
  2023年   71篇
  2022年   131篇
  2021年   240篇
  2020年   184篇
  2019年   107篇
  2018年   114篇
  2017年   170篇
  2016年   225篇
  2015年   227篇
  2014年   545篇
  2013年   461篇
  2012年   595篇
  2011年   545篇
  2010年   432篇
  2009年   455篇
  2008年   469篇
  2007年   564篇
  2006年   506篇
  2005年   560篇
  2004年   481篇
  2003年   484篇
  2002年   380篇
  2001年   314篇
  2000年   268篇
  1999年   212篇
  1998年   105篇
  1997年   84篇
  1996年   42篇
  1995年   48篇
  1994年   28篇
  1993年   16篇
  1992年   21篇
  1991年   10篇
  1990年   12篇
  1989年   16篇
  1988年   4篇
  1987年   10篇
  1986年   3篇
  1985年   9篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1966年   1篇
  1951年   1篇
排序方式: 共有9167条查询结果,搜索用时 17 毫秒
1.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
2.
DNA can experience “replication stress”, an important source of genome instability, induced by various external or endogenous impediments that slow down or stall DNA synthesis. While genome instability is largely documented to favor both tumor formation and heterogeneity, as well as drug resistance, conversely, excessive instability appears to suppress tumorigenesis and is associated with improved prognosis. These findings support the view that karyotypic diversity, necessary to adapt to selective pressures, may be limited in tumors so as to reduce the risk of excessive instability. This review aims to highlight the contribution of specialized DNA polymerases in limiting extreme genetic instability by allowing DNA replication to occur even in the presence of DNA damage, to either avoid broken forks or favor their repair after collapse. These mechanisms and their key regulators Rad18 and Polθ not only offer diversity and evolutionary advantage by increasing mutagenic events, but also provide cancer cells with a way to escape anti-cancer therapies that target replication forks.  相似文献   
3.
Diabetic wound healing still faces great challenges due to the excessive inflammation, easy infection, and impaired angiogenesis in wound beds. The immunoregulation of macrophages polarization toward M2 phenotype that facilitates the transition from inflammation to proliferation phase has been proved to be an effective way to improve diabetic wound healing. Herein, an M2 phenotype-enabled anti-inflammatory, antioxidant, and antibacterial conductive hydrogel scaffolds (GDFE) for producing rapid angiogenesis and diabetic wound repair are reported. The GDFE scaffolds are fabricated facilely through the dynamic crosslinking between polypeptide and polydopamine and graphene oxide. The GDFE scaffolds possess thermosensitivity, self-healing behavior, injectability, broad-spectrum antibacterial activity, antioxidant and anti-inflammatory ability, and electronic conductivity. GDFE effectively activates the polarization of macrophages toward M2 phenotype and significantly promotes the proliferation of dermal fibroblasts, the migration, and in vitro angiogenesis of endothelial cells through paracrine mechanisms. The in vivo results from a full-thickness diabetic wound model demonstrate that GDFE can rapidly promote the diabetic wound repair and skin regeneration, through fast anti-inflammation and angiogenesis and M2 macrophage polarization. This study provides highly efficient strategy for treating diabetic wound repair through designing the M2 polarization-enabled anti-inflammatory, antioxidant, and antibacterial bioactive materials.  相似文献   
4.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
5.
《Ceramics International》2021,47(24):34810-34819
This study evaluated the effects of different Z-values on the physical, chemical, and biological properties of β-SiAlON ceramics. Increasing the Z-value of the β-Si3N4 solid solution's main phase resulted in the replacement of Si–N bonds with Al–O bonds. The number of columnar crystals decreased, bulk density increased, and porosity decreased, thus transforming the fine-particle microstructure of β-Si3N4 into the columnar structure of β-SiAlON. The compressive strength increased, which facilitated sintering at 1500 °C without sintering auxiliaries. H+ and OH ions in deionized water broke the covalent bonds on the β-SiAlON surface, thereby forming new Si–OH, Al–OH, and N–H bonds on the β-SiAlON surface and producing SiO44−, AlO2, and NH4+ groups in the solution. Increasing the soaking time changed the compositions of ionized H+ and OH ions, thus increasing the pH. MC3T3-E1 cells were cultured on the β-SiAlON surface, and it was observed that the increase in the Z-value of β-SiAlON had no influence on cell adhesion and spreading, but it may slightly suppress cell proliferation at high Z-values. At low Z-values, the low AlO2 concentration helps promote osteogenic differentiation and mineralized nodule formation. Thus, β-SiAlON ceramics possess excellent physical, chemical, and biological properties and are considered excellent bone-repairing materials.  相似文献   
6.
The base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. It is generally believed that small non-bulky oxidatively generated DNA base modifications are removed by BER pathways, whereas DNA helix-distorting bulky lesions derived from the attack of chemical carcinogens or UV irradiation are repaired by the NER machinery. However, existing and growing experimental evidence indicates that oxidatively generated DNA lesions can be repaired by competitive BER and NER pathways in human cell extracts and intact human cells. Here, we focus on the interplay and competition of BER and NER pathways in excising oxidatively generated guanine lesions site-specifically positioned in plasmid DNA templates constructed by a gapped-vector technology. These experiments demonstrate a significant enhancement of the NER yields in covalently closed circular DNA plasmids (relative to the same, but linearized form of the same plasmid) harboring certain oxidatively generated guanine lesions. The interplay between the BER and NER pathways that remove oxidatively generated guanine lesions are reviewed and discussed in terms of competitive binding of the BER proteins and the DNA damage-sensing NER factor XPC-RAD23B to these lesions.  相似文献   
7.
Nerve growth conduits are designed to support and promote axon regeneration following nerve injuries. Multifunctionalized conduits with combined physical and chemical cues, are a promising avenue aimed at overcoming current therapeutic barriers. However, the efficacious assembly of conduits that promote neuronal growth remains a challenge. Here, a biomimetic regenerative gel is developed, that integrates physical and chemical cues in a biocompatible “one pot reaction” strategy. The collagen gel is enriched with magnetic nanoparticles coated with nerve growth factor (NGF). Then, through a remote magnetic actuation, highly aligned fibrillar gel structure embedded with anisotropically distributed coated nanoparticles, combining multiple regenerating strategies, is obtained. The effects of the multifunctional gels are examined in vitro, and in vivo in a 10-mm rat sciatic nerve injury model. The magneto-based therapeutic conduits demonstrate oriented and directed axonal growth, and improve nerve regeneration in vivo. The study of multifunctional guidance scaffolds that can be implemented efficiently and remotely provides the foundation to a novel therapeutic approach to overcome current medical obstacles for nerve injuries.  相似文献   
8.
Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.  相似文献   
9.
10.
瓦斯抽采钻孔普遍存在因变形、煤渣积聚及塌孔等导致钻孔堵塞和抽采效果差的问题。通过分析钻孔塌堵失稳机制,得出煤岩体性质、地质构造及多应力耦合条件是造成钻孔失稳的主要因素,进而推断相应堵孔段情形。利用高压水射流解堵作用,提出了水射流疏通-筛管护孔协同修护技术,并研制出轻型气动钻孔修复装备。应用结果表明,该协同修护技术能有效解决瓦斯抽采钻孔塌堵后无法有效抽采的技术难题,试验钻孔修护深度达到50 m,修护完成后单孔抽采瓦斯浓度和瓦斯纯流量比修复前提高0.57~3.67倍和0.99~5.15倍,抽采效果大幅改善,实现了塌堵钻孔的快速便捷修复进而确保了瓦斯流动通道的畅通。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号