首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41243篇
  免费   3960篇
  国内免费   1834篇
电工技术   3220篇
技术理论   9篇
综合类   3240篇
化学工业   2605篇
金属工艺   483篇
机械仪表   1468篇
建筑科学   6936篇
矿业工程   2951篇
能源动力   1790篇
轻工业   5181篇
水利工程   3735篇
石油天然气   1796篇
武器工业   657篇
无线电   1678篇
一般工业技术   3373篇
冶金工业   1875篇
原子能技术   1161篇
自动化技术   4879篇
  2024年   91篇
  2023年   630篇
  2022年   1298篇
  2021年   1650篇
  2020年   1640篇
  2019年   1186篇
  2018年   1207篇
  2017年   1316篇
  2016年   1687篇
  2015年   1671篇
  2014年   3439篇
  2013年   3214篇
  2012年   3588篇
  2011年   3548篇
  2010年   2630篇
  2009年   2468篇
  2008年   2301篇
  2007年   2636篇
  2006年   2328篇
  2005年   1804篇
  2004年   1401篇
  2003年   1210篇
  2002年   915篇
  2001年   662篇
  2000年   499篇
  1999年   377篇
  1998年   285篇
  1997年   240篇
  1996年   189篇
  1995年   151篇
  1994年   142篇
  1993年   116篇
  1992年   70篇
  1991年   59篇
  1990年   47篇
  1989年   56篇
  1988年   56篇
  1987年   29篇
  1986年   26篇
  1985年   24篇
  1984年   25篇
  1983年   20篇
  1982年   11篇
  1981年   7篇
  1980年   12篇
  1979年   7篇
  1973年   4篇
  1965年   14篇
  1959年   10篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
夏敏浩  赵万剑  王骏 《中州煤炭》2022,(7):189-194,200
为了提高配电网差异化节能降耗效果,解决现有潜力评估方法存在的应用性能差的问题,提出碳中和背景下配电网差异化节能降耗潜力优化评估方法。根据配电网的空间结构,构建相应的等值电路模型。在该模型下,从设备损耗和运行附加损耗2个方面计算配电网的损耗量。根据损耗量计算结果,确定配电网差异化碳中和节能降耗方式。从静态和动态2个角度设置潜力评估指标,通过指标数据处理、指标权重求解等步骤,得出配电网差异化节能降耗潜力的综合量化评估结果。将设计潜力评估方法应用到配电网的差异化节能降耗改造工作中,能够有效降低配电网的实际线损量、降低区域损耗费用,并具有较高的应用价值。  相似文献   
2.
A dual-coolant integrated experimental facility named DRAGON-V has been developed at the Institute of Nuclear Energy Safety Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, for the key technology research and performance evaluation of candidate liquid lithium-lead (PbLi) blanket of hydrogen fusion reactors. The loop is composed of a material test sub-loop and thermal-hydraulic test sub-loop, the design parameters are PbLi inventory 20 tons, PbLi temperature up to 550 °C, the maximum PbLi flow rate up to 40 kg/s. A novel cold trap system is designed to remove the suspended and crystalized impurities in PbLi fluid with three cooling zones and cross row arrangement of rod bundle filter elements. The paper describes the loop itself and its major components, initial loop testing, flow and measurement diagnostics and current experiments. The obtained test results of the loop and its components have demonstrated that the new facility is fully functioning and ready for experimental studies of material corrosion with/without a magnetic field, magnetohydrodynamic (MHD) effect, purification, heat and mass transfer phenomena in PbLi flows and can also be used in mock-up testing in conditions relevant to fusion applications.  相似文献   
3.
Hydrogen peroxide (H2O2) has been listed as one of the 100 most important chemicals in the world. However, huge amount of residual H2O2 is hard to timely decomposed into O2 and H2O under acidic condition, easily resulting in explosion hazard. Here, we reported a core–shell structure catalyst, that is graphene with Co N structure encapsulated Co nanoparticles. Co N graphene shell serves as the active site for the H2O2 decomposition, and Co core further enhance this decomposition. Benefiting from it, the H2O2 decomposition were close to 100% after 6 cycles without pH adjustment, which increased 6 orders of magnitude compared with no catalyst. At the same time, the O2 generation reached 99.67% in 2 h with little metal leaching, and ·OH has been greatly inhibited to only 0.08%. This work can cleanly remove H2O2 with little deep oxidation and protect the process of H2O2 utilization to achieve a safer world.  相似文献   
4.
Hydrogen produced from renewable resources is one of the cleanest fuels and could be used to store intermittent solar, wind and other energies. The main concern about using hydrogen is its hazards, such as high storage pressure, wide-range flammability, low mass density, and high diffusion. This study investigated the hazards of compressed hydrogen storage by developing a CFD model to understand the gas dispersion behaviour. The model was validated using the past experimental data and showed a good agreement, which could demonstrate the diffusion characteristics and gas stratification of a buoyant gas. A case study of an accidental release of compressed hydrogen from a storage tank was investigated to evaluate the risk of a hydrogen plant. A mathematical model of the jet spill was used to account for the choking effect from a high-pressure release to ensure the input velocity in CFD simulation is suitable for modelling gas dispersion using verified spatial and temporal scales, then the simulation results were used as inputs of vapour cloud explosions (VCEs) to investigate the potential overpressure effect. It was found the CFD model could predict a more reasonable flammable gas amount in cloud than using the bulk hydrogen release rate. The safety distance based on the overpressure prediction was reduced by 35%. The method proposed in this study can provide more validity for the consequence analysis as part of risk assessment.  相似文献   
5.
In this research study, a real model of a hydrogen fuel cell vehicle is simulated using Simcenter Amesim software. The software used for vehicle simulation enabled dynamic simulation, resulting in more precise simulation. Furthermore, considering that fuel cell degradation is one of the significant challenges confronting fuel cell vehicle manufacturers, we examined the impact of fuel cell degradation on the performance of hydrogen vehicles. According to the findings, a hydrogen vehicle with a degraded fuel cell consumes 14.3% more fuel than a fresh fuel cell hydrogen vehicle. A comprehensive life cycle assessment (LCA) is also performed for the designed hydrogen vehicle. The results of the hydrogen vehicle life cycle assessment are compared with a gasoline vehicle to fully understand the effect of hydrogen vehicles in reducing air emissions. The methods considered for hydrogen production included natural gas reforming, electrolysis, and thermochemical water splitting method. Furthermore, because the source of electricity used for electrolysis has a significant impact on the life cycle emission of a hydrogen vehicle, three different power sources were considered in this assessment. Finally, while a hydrogen vehicle with a degraded fuel cell emits lower carbon dioxide (CO2) than a gasoline vehicle, the emitted CO2 from this vehicle using hydrogen from electrolysis is approximately 25% higher than that of a new hydrogen vehicle.  相似文献   
6.
This paper presents a novel No-Reference Video Quality Assessment (NR-VQA) model that utilizes proposed 3D steerable wavelet transform-based Natural Video Statistics (NVS) features as well as human perceptual features. Additionally, we proposed a novel two-stage regression scheme that significantly improves the overall performance of quality estimation. In the first stage, transform-based NVS and human perceptual features are separately passed through the proposed hybrid regression scheme: Support Vector Regression (SVR) followed by Polynomial curve fitting. The two visual quality scores predicted from the first stage are then used as features for the similar second stage. This predicts the final quality scores of distorted videos by achieving score level fusion. Extensive experiments were conducted using five authentic and four synthetic distortion databases. Experimental results demonstrate that the proposed method outperforms other published state-of-the-art benchmark methods on synthetic distortion databases and is among the top performers on authentic distortion databases. The source code is available at https://github.com/anishVNIT/two-stage-vqa.  相似文献   
7.
本文介绍“风险矩阵法”进行风险分级工作的基本思路,结合水泥厂的生产特点通过危险有害因素辨识,获得危险源分布情况,采用风险矩阵法对风险进行评估,按风险值将风险等级划分为重大风险、较大风险、一般风险和低风险,为水泥生产企业的安全风险分级工作提供参考。  相似文献   
8.
HFC-134a is a widely used environment-friendly refrigerant. At present, China is the largest producer of HFC-134a in the world. The production of HFC-134a in China mainly adopts the calcium carbide acetylene route. However, the production route has high resource and energy consumption and large waste emission, and few of the studies addressed on the environmental performance of its production process. This study quantified the environmental performance of HFC-134a production by calcium carbide route via carrying out a life cycle assessment (LCA) using the CML 2001 method. And uncertainty analysis by Monte-Carlo simulation was also carried out. The results showed that electricity had the most impact on the environment, followed by steam, hydrogen fluoride and chlorine, and the impact of direct CO2 emissions in calcium carbide production stage on the global warming effect also could not be ignored. Therefore, the clean energy (e.g., wind, solar, biomass, and natural gas) was used to replace coal-based electricity and coal-fired steam in this study, showing considerable environmental benefits. At the same time, the use of advanced production technologies could also improve environmental benefits, and the environmental impact of the global warming category could be reduced by 4.1% via using CO2 capture and purification technology. The Chinese database of HFC-134a production established in this study provides convenience for the relevant study of scholars. For the production of HFC-134a, this study helps to better identify the specific environmental hotspots and proposes useful ways to improve the environmental benefits.  相似文献   
9.
Lake Peipsi, one of the world’s largest lakes, is shared between Estonia and Russia. The water quality in different parts of the lake has so far been assessed independently. Here we explore opportunities for combining data of Estonian and Russian monitoring. For that, we 1) analysed the compatibility of data for some water quality variables; 2) estimated the potential effects of the differences in sampling frequency; 3) provided a few regression models to calculate the missing data for months not sampled by the Russian side. Data of the concurrent Estonian and Russian sampling indicated a good compatibility. Estonian data analysis suggested that water quality assessment results are sensitive to sampling frequency. For example, total phosphorus (TP) in the largest basin showed a long-term decreasing trend in three month data that disappeared when data for other months were added. Disregarding some months may lead to under- or overestimation of certain factors with no consistency in the response of different basins. Hence, data of the whole ice-free period are recommended for an adequate water quality assessment. Furthermore, we demonstrated that monthly values of the water quality variables of the same year are autocorrelated. Based on this, we filled the gaps in the long-term data and compiled a dataset for the whole lake that enables its most comprehensive use in water quality assessment and management. Long-term data revealed no water quality improvement of Lake Peipsi. Further reduction of the external nutrient load is needed. Eutrophication is sustained by high internal phosphorus load.  相似文献   
10.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号