首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62790篇
  免费   5030篇
  国内免费   6671篇
电工技术   3756篇
技术理论   67篇
综合类   7720篇
化学工业   6451篇
金属工艺   1684篇
机械仪表   4037篇
建筑科学   16038篇
矿业工程   2287篇
能源动力   1525篇
轻工业   1024篇
水利工程   2342篇
石油天然气   1762篇
武器工业   1009篇
无线电   4759篇
一般工业技术   4656篇
冶金工业   1453篇
原子能技术   298篇
自动化技术   13623篇
  2024年   92篇
  2023年   753篇
  2022年   1039篇
  2021年   1559篇
  2020年   1682篇
  2019年   1218篇
  2018年   1113篇
  2017年   1427篇
  2016年   1656篇
  2015年   2073篇
  2014年   4993篇
  2013年   3588篇
  2012年   4589篇
  2011年   5080篇
  2010年   4080篇
  2009年   4219篇
  2008年   4281篇
  2007年   5213篇
  2006年   4627篇
  2005年   4204篇
  2004年   3586篇
  2003年   2971篇
  2002年   2199篇
  2001年   1761篇
  2000年   1413篇
  1999年   1066篇
  1998年   770篇
  1997年   645篇
  1996年   542篇
  1995年   450篇
  1994年   347篇
  1993年   283篇
  1992年   220篇
  1991年   133篇
  1990年   94篇
  1989年   92篇
  1988年   67篇
  1987年   50篇
  1986年   33篇
  1985年   36篇
  1984年   48篇
  1983年   49篇
  1982年   27篇
  1981年   17篇
  1980年   18篇
  1979年   14篇
  1978年   5篇
  1977年   11篇
  1957年   6篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
1.
建立了层叠流道的三维模型和有限元网格模型,根据流变测试数据,采用Polymat对物料的黏度模型参数进行拟合,并利用Polyflow软件对聚丙烯腈(PAN)凝胶在层叠流道内的三维等温流动过程进行了数值模拟分析。研究发现,当入口流量增大时,层叠流道出口速度的不均匀性增加;沿流动方向流道内压力逐渐降低,并在出口处降低至同一最低值;流道进出口压力差与入口流量大小具有正相关性;在流道的中心截面上剪切速率分布均匀,波动较小。  相似文献   
2.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
3.
我公司使用的硫化机采用氮气定型,二次水硫化的工艺。由于特种工程胎胎体偏厚且大,成型机都比较大,生产过程中的帘布筒、钢丝、胎侧等部件都比较重且大。成型胎面使用胎面缠绕机缠绕,所以整个生产过程难度较大。特种工程胎硫化外胎的主要质量问题有:胎面皮泡、胎侧缺胶、胎侧泡、胎肩侧皮泡、子口内侧露线、子口缺胶、胎肚内缺(窝气)、胎肚露线、胎肚皮泡、胎肚串泡、子口支边、胎冠支边、子口鼓包、外胎花缺等。通过对特种工程胎硫化外胎质量缺陷原因分析,找到相应的解决措施,从而减少硫化外胎质量缺陷。  相似文献   
4.
Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl β-d-N,N′,N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2–8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.  相似文献   
5.
Fluorescent fusion proteins are powerful tools for studying biological processes in living cells, but universal application is limited due to the voluminous size of those tags, which might have an impact on the folding, localization or even the biological function of the target protein. The designed biocatalyst trypsiligase enables site-directed linkage of small-sized fluorescence dyes on the N terminus of integral target proteins located in the outer membrane of living cells through a stable native peptide bond. The function of the approach was tested by using the examples of covalent derivatization of the transmembrane proteins CD147 as well as the EGF receptor, both presented on human HeLa cells. Specific trypsiligase recognition of the site of linkage was mediated by the dipeptide sequence Arg-His added to the proteins’ native N termini, pointing outside the cell membrane. The labeling procedure takes only about 5 minutes, as demonstrated for couplings of the fluorescence dye tetramethyl rhodamine and the affinity label biotin as well.  相似文献   
6.
Bone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D-printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on-demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.  相似文献   
7.
Vascular tissue engineering has made prodigious progress in recent years by converging multidisciplinary approaches. Latest technological advancements foster the development of next-generation tissue-engineered vascular grafts (TEVGs) for treating various vasculopathies. While traditional therapeutic methods rely on bypassing the severely damaged vessels with synthetic counterparts with no growth potential, contemporary perspectives focus on biodegradable conduits bestowing an inherent remodeling capability. This review highlights emerging innovative trends and technologies adopted to pragmatically fulfill current scientific needs while improving overall TEVG performance in pre-clinical and clinical settings. A comprehensive overview of various milestones achieved in the past few decades is first summarized, followed by an appraisal of the significant hurdles for clinical translation. The latest techniques to rationally address critical challenges, viz., intimal hyperplasia, thrombosis, constructive graft remodeling, and adequate neo-tissue formation are discussed. Finally, an update on ongoing clinical trials is provided and future perspectives required to persuade TEVGs to become a clinical reality are delineated.  相似文献   
8.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   
9.
Engineering simulations have opened several gates for today’s chemical engineers. They are powerful tools to provide technical content as physics-based numerical solvers. Augmented reality (AR) and virtual reality (VR), on the other hand, are already underway to digitize environments in many fields. The combination of AR/VR environments and simulations in engineering education has been attracting widespread interest. Literature has demonstrated a massive amount of digital educational environments in several contexts as being complementary to conventional educational methods. Nevertheless, hosting technical content produced by engineering simulations with educational AR/VR is still challenging and requires expertise from multiple disciplines throughout the technical development. Present work provides a facile and agile methodology for low-cost hardware but content-wise rich AR software development. Inspired by the Covid-19 pandemic, a case study is developed to teach chemical-engineering concepts using a liquid-soap synthesis process. Accordingly, we assess and conclude the digital development process to guide inexperienced developers for the digitalization of teaching content. The present contribution serves as an example of the power of integrating AR/VR with traditional engineering simulations for educational purposes. The digital tool developed in this work is shared in the online version.  相似文献   
10.
Tissue engineering requires the precise positioning of mammalian cells and biomaterials on substrate surfaces or in preprocessed scaffolds. Although the development of 2D and 3D bioprinting technologies has made substantial progress in recent years, precise, cell-friendly, easy to use, and fast technologies for selecting and positioning mammalian cells with single cell precision are still in need. A new laser-based bioprinting approach is therefore presented, which allows the selection of individual cells from complex cell mixtures based on morphology or fluorescence and their transfer onto a 2D target substrate or a preprocessed 3D scaffold with single cell precision and high cell viability (93–99% cell survival, depending on cell type and substrate). In addition to precise cell positioning, this approach can also be used for the generation of 3D structures by transferring and depositing multiple hydrogel droplets. By further automating and combining this approach with other 3D printing technologies, such as two-photon stereolithography, it has a high potential of becoming a fast and versatile technology for the 2D and 3D bioprinting of mammalian cells with single cell resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号