首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  国内免费   4篇
  完全免费   51篇
  自动化技术   93篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   7篇
  2014年   1篇
  2013年   4篇
  2012年   12篇
  2011年   14篇
  2010年   12篇
  2009年   13篇
  2008年   8篇
  2007年   7篇
  2006年   5篇
  2005年   1篇
排序方式: 共有93条查询结果,搜索用时 31 毫秒
1.
基于近邻传播算法的半监督聚类   总被引:30,自引:2,他引:28       下载免费PDF全文
肖 宇  于 剑 《软件学报》2008,19(11):2803-2813
提出了一种基于近邻传播(affinity propagation,简称AP)算法的半监督聚类方法.AP是在数据点的相似度矩阵的基础上进行聚类.对于规模很大的数据集,AP算法是一种快速、有效的聚类方法,这是其他传统的聚类算法所不能及的,比如:K中心聚类算法.但是,对于一些聚类结构比较复杂的数据集,AP算法往往不能得到很好的聚类结果.使用已知的标签数据或者成对点约束对数据形成的相似度矩阵进行调整,进而达到提高AP算法的聚类性能.实验结果表明,该方法不仅提高了AP对复杂数据的聚类结果,而且在约束对数量较多时,该方法要优于相关比对算法.  相似文献
2.
密度敏感的半监督谱聚类   总被引:27,自引:0,他引:27       下载免费PDF全文
王玲  薄列峰  焦李成 《软件学报》2007,18(10):2412-2422
聚类通常被认为是一种无监督的数据分析方法,然而在实际问题中可以很容易地获得有限的样本先验信息,如样本的成对限制信息.大量研究表明,在聚类搜索过程中充分利用先验信息会显著提高聚类算法的性能.首先分析了在聚类过程中仅利用成对限制信息存在的不足,尝试探索数据集本身固有的先验信息--空间一致性先验信息,并提出利用这类先验信息的具体方法.接着,将两类先验信息同时引入经典的谱聚类算法中,提出一种密度敏感的半监督谱聚类算法(density-sensitive semi-supervised spectral clustering algorithm,简称DS-SSC).两类先验信息在指导聚类搜索的过程中能够起到相辅相成的作用,这使得DS-SSC算法相对于仅利用成对限制信息的聚类算法在聚类性能上有了显著的提高.在UCI基准数据集、USPS手写体数字集以及TREC的文本数据集上的实验结果验证了这一点.  相似文献
3.
基于成对约束的判别型半监督聚类分析   总被引:10,自引:1,他引:9       下载免费PDF全文
尹学松  胡恩良  陈松灿 《软件学报》2008,19(11):2791-2802
现有一些典型的半监督聚类方法一方面难以有效地解决成对约束的违反问题,另一方面未能同时处理高维数据.通过提出一种基于成对约束的判别型半监督聚类分析方法来同时解决上述问题.该方法有效地利用了监督信息集成数据降维和聚类,即在投影空间中使用基于成对约束的K均值算法对数据聚类,再利用聚类结果选择投影空间.同时,该算法降低了基于约束的半监督聚类算法的计算复杂度,并解决了聚类过程中成对约束的违反问题.在一组真实数据集上的实验结果表明,与现有相关半监督聚类算法相比,新方法不仅能够处理高维数据,还有效地提高了聚类性能.  相似文献
4.
Non-negative matrix factorization for semi-supervised data clustering   总被引:9,自引:6,他引:3  
Traditional clustering algorithms are inapplicable to many real-world problems where limited knowledge from domain experts is available. Incorporating the domain knowledge can guide a clustering algorithm, consequently improving the quality of clustering. In this paper, we propose SS-NMF: a semi-supervised non-negative matrix factorization framework for data clustering. In SS-NMF, users are able to provide supervision for clustering in terms of pairwise constraints on a few data objects specifying whether they “must” or “cannot” be clustered together. Through an iterative algorithm, we perform symmetric tri-factorization of the data similarity matrix to infer the clusters. Theoretically, we show the correctness and convergence of SS-NMF. Moveover, we show that SS-NMF provides a general framework for semi-supervised clustering. Existing approaches can be considered as special cases of it. Through extensive experiments conducted on publicly available datasets, we demonstrate the superior performance of SS-NMF for clustering.
Ming DongEmail:
  相似文献
5.
一种基于谱聚类的半监督聚类方法   总被引:7,自引:1,他引:6  
司文武  钱沄涛 《计算机应用》2005,25(6):1347-1349
半监督聚类利用少部分标签的数据辅助大量未标签的数据进行非监督的学习,从而提高聚类的性能。提出一种基于谱聚类的半监督聚类算法,其利用标签数据的信息,调整点与点之间的距离所形成的距离矩阵,而后基于被调整的距离矩阵进行谱聚类。实验表明,该算法较之于已提出的半监督聚类算法,获得了更好的聚类性能。  相似文献
6.
Semi-supervised graph clustering: a kernel approach   总被引:6,自引:0,他引:6  
Semi-supervised clustering algorithms aim to improve clustering results using limited supervision. The supervision is generally given as pairwise constraints; such constraints are natural for graphs, yet most semi-supervised clustering algorithms are designed for data represented as vectors. In this paper, we unify vector-based and graph-based approaches. We first show that a recently-proposed objective function for semi-supervised clustering based on Hidden Markov Random Fields, with squared Euclidean distance and a certain class of constraint penalty functions, can be expressed as a special case of the weighted kernel k-means objective (Dhillon et al., in Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining, 2004a). A recent theoretical connection between weighted kernel k-means and several graph clustering objectives enables us to perform semi-supervised clustering of data given either as vectors or as a graph. For graph data, this result leads to algorithms for optimizing several new semi-supervised graph clustering objectives. For vector data, the kernel approach also enables us to find clusters with non-linear boundaries in the input data space. Furthermore, we show that recent work on spectral learning (Kamvar et al., in Proceedings of the 17th International Joint Conference on Artificial Intelligence, 2003) may be viewed as a special case of our formulation. We empirically show that our algorithm is able to outperform current state-of-the-art semi-supervised algorithms on both vector-based and graph-based data sets.  相似文献
7.
半监督聚类的若干新进展   总被引:6,自引:0,他引:6  
半监督聚类方法利用少量标记数据提高聚类算法的性能,已逐渐发展成为模式识别及相关领域的研究热点.文中首先综述了半监督聚类算法的一些新进展,包括基于约束的方法、基于距离的方法和基于距离与约束的融合方法.然后提出一种基于约束的半监督模糊C-means聚类算法.实验表明,该算法与传统的模糊C-means及半监督K-means方法相比,具有更好的聚类精度.  相似文献
8.
一种新的基于语义聚类和图算法的自动图像标注方法   总被引:6,自引:1,他引:5  
针对图像检索中的语义鸿沟问题,提出了一种新颖的自动图像标注方法。该方法首先采用了一种基于软约束的半监督图像聚类算法(SHMRF-Kmeans)对已标注图像的区域进行语义聚类,这种聚类方法可以同时考虑图像的视觉信息和语义信息。并利用图算法——Manifold排序学习算法充分发掘语义概念与区域聚类中心的关系,得到两者的联合概率关系表。然后利用此概率关系表标注未知标注的图像。该方法与以前的方法相比可以更加充分地结合图像的视觉特征和高层语义。通过在通用图像集上的实验结果表明,本文提出的自动图像标注方法是有效的。  相似文献
9.
遥感图像的半监督的改进FCM算法   总被引:5,自引:0,他引:5  
对模糊C均值算法进行了改进,采用更适合遥感图像的Mahalanobis距离代替欧氏距离,并在聚类中加入了先验信息。在聚类过程中,未标签的样本通过与已标签的样本进行相似性比较来提高算法的准确性。实验表明,改进的算法能有效提高算法准确度。  相似文献
10.
半监督FCM聚类算法目标函数研究   总被引:4,自引:1,他引:3       下载免费PDF全文
分析了现有半监督FCM算法目标函数的物理意义和平衡系数α的选取,说明Stutz对Pedrycz目标函数的修改使半监督的物理意义更清楚,它在α=1,0时均退化为标准FCM算法,给出了修改后SS-FCM算法的交替求解过程。实验结果:(1)修改算法与Pedrycz算法有相同的半监督作用和清楚的物理解释;(2)对labeled样本采用FCM算法赋值比用随机数的收敛稳定性高;(3)优选的少量labeled样本,使用模糊协方差的SS-CFCM算法提高了聚类准确性和收敛速度。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号