首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15205篇
  免费   1947篇
  国内免费   1370篇
电工技术   317篇
综合类   1453篇
化学工业   921篇
金属工艺   1552篇
机械仪表   1220篇
建筑科学   1014篇
矿业工程   262篇
能源动力   235篇
轻工业   394篇
水利工程   238篇
石油天然气   223篇
武器工业   138篇
无线电   1380篇
一般工业技术   2169篇
冶金工业   987篇
原子能技术   109篇
自动化技术   5910篇
  2024年   34篇
  2023年   218篇
  2022年   297篇
  2021年   413篇
  2020年   464篇
  2019年   408篇
  2018年   397篇
  2017年   448篇
  2016年   457篇
  2015年   491篇
  2014年   783篇
  2013年   896篇
  2012年   972篇
  2011年   1186篇
  2010年   988篇
  2009年   1028篇
  2008年   1088篇
  2007年   1236篇
  2006年   1049篇
  2005年   940篇
  2004年   826篇
  2003年   701篇
  2002年   599篇
  2001年   495篇
  2000年   401篇
  1999年   337篇
  1998年   236篇
  1997年   214篇
  1996年   170篇
  1995年   145篇
  1994年   120篇
  1993年   90篇
  1992年   71篇
  1991年   52篇
  1990年   47篇
  1989年   47篇
  1988年   25篇
  1987年   19篇
  1986年   13篇
  1985年   17篇
  1984年   14篇
  1983年   14篇
  1982年   12篇
  1981年   8篇
  1980年   9篇
  1979年   10篇
  1976年   7篇
  1975年   7篇
  1972年   3篇
  1963年   3篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
Retrieving 3D shapes with 2D images has become a popular research area nowadays, and a great deal of work has been devoted to reducing the discrepancy between 3D shapes and 2D images to improve retrieval performance. However, most approaches ignore the semantic information and decision boundaries of the two domains, and cannot achieve both domain alignment and category alignment in one module. In this paper, a novel Collaborative Distribution Alignment (CDA) model is developed to address the above existing challenges. Specifically, we first adopt a dual-stream CNN, following a similarity guided constraint module, to generate discriminative embeddings for input 2D images and 3D shapes (described as multiple views). Subsequently, we explicitly introduce a joint domain-class alignment module to dynamically learn a class-discriminative and domain-agnostic feature space, which can narrow the distance between 2D image and 3D shape instances of the same underlying category, while pushing apart the instances from different categories. Furthermore, we apply a decision boundary refinement module to avoid generating class-ambiguity embeddings by dynamically adjusting inconsistencies between two discriminators. Extensive experiments and evaluations on two challenging benchmarks, MI3DOR and MI3DOR-2, demonstrate the superiority of the proposed CDA method for 2D image-based 3D shape retrieval task.  相似文献   
2.
An important difficulty associated with alkaline water electrolysis is the rise in anode overpotential attributable to bubble coverage of the electrode surface. For this study, a system with a high-speed video camera was developed, achieving in-situ observation of bubble generation on an electrode surface, monitoring an area of 1.02 mm2 at 6000 frames per second. The relation between polarization curve (current density up to 3.0 A cm?2) and oxygen bubble generation behavior on nickel electrodes having cylindrical wires and rectangular wires of different sizes (100–300 μm) was clarified. The generated bubbles slide upward, contacting the electrode surface and detaching at the top edge. Observations indicate that small electrodes have short bubble residence time and thin bubble covering layer on the electrode. As a result, the small electrode diameter contributes to smaller overpotential at high current density.  相似文献   
3.
Interface shear strength of geosynthetic clay liners (GCL) with the sand particles is predominantly influenced by the surface characteristics of the GCL, size and shape of the sand particles and their interaction mechanisms. This study brings out the quantitative effects of particle shape on the interaction mechanisms and shear strength of GCL-sand interfaces. Interface direct shear tests are conducted on GCL in contact with a natural sand and a manufactured sand of identical gradation, eliminating the particle size effects. Results showed that manufactured sand provides effective particle-fiber interlocking compared to river sand, due to the favorable shape of its grains. Further, the role of particle shape on the hydration of GCL is investigated through interface shear tests on GCL-sand interfaces at different water contents. Bentonite hydration is found to be less in tests with manufactured sand, leading to better interface shear strength. Grain shape parameters of sands, surface changes related to hydration and particle entrapment in GCL are quantified through image analysis on sands and tested GCL surfaces. It is observed that the manufactured sand provides higher interface shear strength and causes lesser hydration related damages to GCL, owing to its angular particles and low permeability.  相似文献   
4.
With a sharp increase in the information volume, analyzing and retrieving this vast data volume is much more essential than ever. One of the main techniques that would be beneficial in this regard is called the Clustering method. Clustering aims to classify objects so that all objects within a cluster have similar features while other objects in different clusters are as distinct as possible. One of the most widely used clustering algorithms with the well and approved performance in different applications is the k-means algorithm. The main problem of the k-means algorithm is its performance which can be directly affected by the selection in the primary clusters. Lack of attention to this crucial issue has consequences such as creating empty clusters and decreasing the convergence time. Besides, the selection of appropriate initial seeds can reduce the cluster’s inconsistency. In this paper, we present a new method to determine the initial seeds of the k-mean algorithm to improve the accuracy and decrease the number of iterations of the algorithm. For this purpose, a new method is proposed considering the average distance between objects to determine the initial seeds. Our method attempts to provide a proper tradeoff between the accuracy and speed of the clustering algorithm. The experimental results showed that our proposed approach outperforms the Chithra with 1.7% and 2.1% in terms of clustering accuracy for Wine and Abalone detection data, respectively. Furthermore, achieved results indicate that comparing with the Reverse Nearest Neighbor (RNN) search approach, the proposed method has a higher convergence speed.  相似文献   
5.
At present, the synthesis of body temperature triggering shape memory polymers usually requires elaborate structural design, which limits their wide application. Herein, starting from bio-based Eucommia ulmoides gum (EUG), a series of EUG/silica hybrids (ESHs) are prepared through a facile one-pot process, in which EUG is epoxied and then self-crosslinked with SiO2 by epoxy ring-open reaction. Varying the amount of H2O2, the shape memory transition temperature (Ttrans) of ESHs is adjusted to 47.4–36.6 ℃, which is close to human body temperature (37 ℃). Among them, ESH-17 exhibited the best body temperature triggering shape memory ability (Ttrans = 36.6 ℃), which can restore the permanent shape within 60 s at 37 ℃ with a shape fixity ratio of 99% and shape recovery ratio near 100%. In addition, the shape memory mechanism is discussed and shows some application scenarios of ESHs. The as-produced materials can be used as smart biomaterials such as self-tightening sutures, self-sealing root canal filling materials, and so on.  相似文献   
6.
高熵形状记忆合金是在等原子比NiTi合金的基础上,结合高熵合金的概念,逐渐发展起来的一种新型高温形状记忆合金。近年来,已开发出了综合性能优异的(TiZrHf)50(NiCoCu)50系和(TiZrHf)50(NiCuPd)50系高熵形状记忆合金,引起了广泛的关注和研究兴趣。本文从物相组成、微观组织、马氏体相变行为、形状记忆效应和超弹性等角度出发,综述了高熵形状记忆合金的研究进展,并对高熵形状记忆合金未来的研究重点进行了展望。  相似文献   
7.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
8.
Shape from focus (SFF) is a technique to recover the shape of an object from multiple images taken at various focus settings. Most of conventional SFF techniques compute focus value of a pixel by applying one of focus measure operators on neighboring pixels on the same image frame. However, in the optics with limited depth of field, neighboring pixels of an image have different degree of focus for curved objects, thus the computed focus value does not reflect the accurate focus level of the pixel. Ideally, an accurate focus value of a pixel needs to be measured from the neighboring pixels lying on tangential plane of the pixel in image space. In this article, a tangential plane on each pixel location (i, j) in image sensor is searched by selecting one of five candidate planes based on the assumption that the maximum variance of focus values along the optical axis is achieved from the neighborhood lying on tangential plane of the pixel (i, j). Then, a focus measure operator is applied on neighboring pixels lying on the searched plane. The experimental results on both the synthetic and real microscopic objects show the proposed method produces more accurate three-dimensional shape in comparison to conventional SFF method that applies focus measures on original image planes.  相似文献   
9.
岩石的脆性与致密油气储集层压裂改造效果密切相关,但致密岩石的脆性对裂缝扩展规律的影响仍不明确。基于真三轴压裂模拟实验系统,对鄂尔多斯盆地东部3种不同脆性致密砂岩开展了压裂模拟实验,分析了脆性、压裂液类型和层理对裂缝扩展规律的影响。研究表明,山1段致密砂岩脆性最强,长7段致密砂岩次之,盒8段致密砂岩脆性最弱;在层理不发育的条件下,相比于中等脆性的盒8段致密砂岩,强脆性的山1段致密砂岩采用滑溜水压裂形成的单条裂缝扩展更充分,液态CO2压裂形成的分支裂缝数量更多;在层理发育的条件下,长7段致密砂岩采用滑溜水压裂和液态CO2压裂形成的裂缝的形态均较复杂;相比于滑溜水压裂,液态CO2压裂形成的裂缝宽度更小;液态CO2压裂更适用于脆性较强、层理发育的长7段致密砂岩储集层压裂改造。  相似文献   
10.
Search results of spatio-temporal data are often displayed on a map, but when the number of matching search results is large, it can be time-consuming to individually examine all results, even when using methods such as filtered search to narrow the content focus. This suggests the need to aggregate results via a clustering method. However, standard unsupervised clustering algorithms like K-means (i) ignore relevance scores that can help with the extraction of highly relevant clusters, and (ii) do not necessarily optimize search results for purposes of visual presentation. In this article, we address both deficiencies by framing the clustering problem for search-driven user interfaces in a novel optimization framework that (i) aims to maximize the relevance of aggregated content according to cluster-based extensions of standard information retrieval metrics and (ii) defines clusters via constraints that naturally reflect interface-driven desiderata of spatial, temporal, and keyword coherence that do not require complex ad-hoc distance metric specifications as in K-means. After comparatively benchmarking algorithmic variants of our proposed approach – RadiCAL – in offline experiments, we undertake a user study with 24 subjects to evaluate whether RadiCAL improves human performance on visual search tasks in comparison to K-means clustering and a filtered search baseline. Our results show that (a) our binary partitioning search (BPS) variant of RadiCAL is fast, near-optimal, and extracts higher-relevance clusters than K-means, and (b) clusters optimized via RadiCAL result in faster search task completion with higher accuracy while requiring a minimum workload leading to high effectiveness, efficiency, and user satisfaction among alternatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号