首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  国内免费   1篇
  自动化技术   10篇
  2011年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有10条查询结果,搜索用时 34 毫秒
1
1.
具有变异特征的蚁群算法   总被引:205,自引:3,他引:202  
蚁群算法是一种新型的模拟进行算法,初步的研究已经表明该算法具有许多优良的性质,但该算法也存在一些缺点,如计算时间较长。  相似文献
2.
遗传算法综述   总被引:160,自引:3,他引:157  
遗传算法来源于进化论和群体遗传学,是计算智能的重要组成部分,正受到众多学科的高度重视。本文系统综述了遗传算法的发展历程,理论研究和应用研究,并进行了分析和评价。  相似文献
3.
一种改进的蚁群算法求解最短路径问题   总被引:26,自引:3,他引:23  
蚁群算法是一种新型的模拟进化算法,为求解复杂的组合优化问题提供了一种新的思路,该文应用蚁群算法求解最短路径问题,对算法的选择策略,局部搜索,信息量修改三方面进行改进,使算法不易陷入局部最优解,并且能较快地收敛到全局最优解,实验结果表明,改进方法是合理的,有效的。  相似文献
4.
具有新型遗传特征的蚁群算法   总被引:19,自引:6,他引:13  
蚁群算法是一种新型的模拟进化算法,具有很好的通用性和鲁棒性,在解决组合优化问题方面有良好效果,但存在如计算时间较长、容易陷入局部最优等问题。本文在蚁群算法的基础上,引入了杂交及变异机制,提出了一种具有新型变异特征的蚁群新算法,在减少计算时间的同时可避免早熟现象。  相似文献
5.
基于蚁群算法的中国旅行商问题满意解   总被引:14,自引:0,他引:14  
蚁群算法是基于群体合作的一类仿生算法,适合于解困难的离散组合优化问题。本文对其做了适当的改进,以克服其求解速度过慢、容易出现停滞的缺陷,并将其用于解决中国旅行商问题。找到了目前巳知的最好的解,同时指出了进一步提高蚁群算法效率还需解决的问题和方向。  相似文献
6.
基于蚁群算法求路径规划问题的新方法及仿真   总被引:7,自引:1,他引:6  
该文提出了一种基于蚁群算法求解路径规划问题的新方法及其仿真,蚁群算法就是对自然界中蚂蚁的寻食过程进行模拟而得出的一种模拟进化算法。与传统的算法相比,该算法的主要特点是正反馈和并行性,正反馈使得该算法能很快发现较好解,并行性使得该算法易于实现并行计算。虽然蚁群算法在时间复杂度上可能不如传统的算法,但是理论研究表明该方法是一种基于种群的鲁棒性较强的模拟进化算法。最后,利用Java语言对蚁群算法和改进的Dijkstra算法进行了仿真,并进行了比较。  相似文献
7.
基于蚁群算法的最优路径选择问题的研究   总被引:3,自引:0,他引:3  
夏立民  王华  窦倩  陈玲 《计算机工程与设计》2007,28(16):3957-3959,4058
交通网络中最优路径的选择尤为重要,各国学者在这方面做了大量的研究和改进.提出了一种基于蚁群算法的最优路径选择问题的新方法.在最优路径的选择过程中采用蚁群算法并对其进行建模,能够发挥算法并行性、正反馈、协作性等特点,使各蚂蚁个体之间相互协作,在较短的时间内发现较优解.研究及模拟实验结果表明,蚁群算法是一种鲁棒性较强的新型模拟仿生算法,具有较好的发展前景.  相似文献
8.
动态跃迁转移蚁群算法   总被引:1,自引:0,他引:1  
胡勇 《计算机工程》2005,31(1):167-168,171
给出了一种改进的蚁群算法,该算法对蚂蚁初始位置选择上进行优化,能较大地提高进化速度,并且还通过动态地调整跃迁转移概率,减少了停滞,加快了收敛速度,实验表明对于某些TSP问题,实验结果优于国外最新的成果。  相似文献
9.
带有单亲遗传特征的蚁群算法   总被引:1,自引:0,他引:1  
周鹏 《计算机工程与设计》2007,28(9):2001-2002,2099
蚁群算法是一种新型的模拟进化算法,具有许多优良的性质,但同时也存在着计算时间过长和易导致早熟收敛等缺点.单亲遗传算法不使用基本遗传算法常用的交叉算子,简化了遗传操作过程,且不要求初始群体具有广泛多样性,计算速度较快,不存在早熟收敛现象.将这两种算法结合,提出一种具有单亲遗传特征的蚁群算法.将蚁群算法每次搜索结果作为初始种群,进行单亲遗传优化改良,求得最短路由.在旅行商问题上的实验证明了该算法的有效性.  相似文献
10.
蚁群算法是一种新型的模拟进化算法,该算法在解决离散优化问题性能良好。该文介绍了对蚁群算法中的ACO算法的基本思想和实现方法,并对其中的参数进行了说明。关于TSP问题中的各个规模的城市数目,对蚁群算法的参数设置进行了实验分析,并给出了合理的参数设置,对规模类似的离散优化问题能够提供有效的借鉴。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号