首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   2篇
  自动化技术   4篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
针对单帧图像的超分辨率的重建问题,在分析基于小波域及空间域相关算法的基础上,提出了一种基于小波变换和迭代反向投影的超分辨率重建算法。该算法结合了小波域和空间域算法的优势,在小波域通过小波变换对图像进行分解,再利用迭代反向投影方法使重构误差最小化,在小波域和空间域均采用简单插值方法来降低计算复杂度。实验数据表明,该算法与现有其他算法相比,得到的峰值信噪比较高,且运算复杂度较低,对图像的重建质量有明显改善。  相似文献
2.
李键红  吕巨建  吴亚榕 《计算机科学》2018,45(2):147-151, 156
图像的自相似性质和图像质量之间存在着密切的关系,清晰的自然图像中几乎所有的图像片都在其自身或较低尺度内存在着重复。然而,在存在噪声或模糊等降质处理的图像中,这一性质明显减弱。针对这一现象,提出一种最大化自相似性先验的盲单帧图像超分辨率算法。该算法通过迭代计算求解超分辨率图像和降质过程的模糊核,使得到的超分辨图像中的任一图像片在输入的低分辨率图像中都以最大的概率存在。这一算法不仅能够准确地计算降质过程的模糊核,得到高质量的高分辨率图像,而且其先验知识随着输入图像的不同而自动进行调整,使得算法具有更强的鲁棒性。大量实验表明,该算法的PSNR,SSIM参数结果较主流算法都有着明显的优势。  相似文献
3.
目的 基于学习的单幅图像超分辨率算法是借助实例训练库由一幅低分辨率图像产生高分辨率图像。提出一种基于图像块自相似性和对非线性映射拟合较好的支持向量回归模型的单幅超分辨率方法,该方法不需使用外部图像训练库。方法 首先根据输入的低分辨率图像建立图像金字塔及包含低/高分辨率图像块对的集合;然后在低/高分辨率图像块对的集合中寻找与输入低分辨率图像块的相似块,利用支持向量回归模型学习这些低分辨率相似块和其对应的高分辨率图像块的中心像素之间的映射关系,进而得到未知高分辨率图像块的中心像素。结果 为了验证本文设计算法的有效性,选取结构和纹理不同的7幅彩色高分辨率图像,对其进行高斯模糊的2倍下采样后所得的低分辨率图像进行超分辨率重构,与双三次插值、基于稀疏表示及基于支持向量回归这3个超分辨率方法重建的高分辨率图像进行比较,峰值信噪比平均依次提升了2.37 dB、0.70 dB和0.57 dB。结论 实验结果表明,本文设计的算法能够很好地实现图像的超分辨率重构,特别是对纹理结构相似度高的图像具有更好的重构效果。  相似文献
4.
基于稀疏表示理论,提出了一种面向单张图片超分辨率的字典学习方法。通过对训练数据进行分类,期望在每一类训练数据训练字典的过程中,增强类内的上下文信息。与之前的面向图像分类的字典学习方法所不同的是,训练数据集由高分辨率图像块和对应的低分辨率图像块共同组成,这使训练得到的字典更适用于图像重构。利用有限的训练数据集,基于上下文的字典学习方法能够提高字典表示的拓展能力,消除由多重训练数据子集带来的冗余。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号