首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  自动化技术   1篇
  2010年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
"高维度小样本"问题是模式识别应用中的主要障碍之一。跨越这一障碍的有效方法之一是采用参数矩阵的低秩逼近,目的是控制模型复杂度。常用的低秩逼近方法需要预先指定目标矩阵秩的大小(如主成分分析)。提出了一种新的基于稀疏约束的低秩判别模型,此模型通过对目标参数进行矩阵分解,然后分别对子成分施加低秩(稀疏)约束,从而达到低秩逼近的目的。进一步将这一思想嵌入一个双边判别模型,并用坐标下降法对目标函数进行优化,使得算法在低秩逼近的同时还有效利用了输入数据的空间特性,从而得到更好的推广性能。其有效性在一个安全生物识别应用上得到了验证。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号