首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  国内免费   19篇
  完全免费   70篇
  自动化技术   141篇
  2018年   5篇
  2017年   17篇
  2016年   16篇
  2015年   28篇
  2014年   21篇
  2013年   16篇
  2012年   20篇
  2011年   7篇
  2010年   7篇
  2009年   1篇
  2008年   3篇
排序方式: 共有141条查询结果,搜索用时 31 毫秒
1.
Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words   总被引:11,自引:0,他引:11  
We present a novel unsupervised learning method for human action categories. A video sequence is represented as a collection of spatial-temporal words by extracting space-time interest points. The algorithm automatically learns the probability distributions of the spatial-temporal words and the intermediate topics corresponding to human action categories. This is achieved by using latent topic models such as the probabilistic Latent Semantic Analysis (pLSA) model and Latent Dirichlet Allocation (LDA). Our approach can handle noisy feature points arisen from dynamic background and moving cameras due to the application of the probabilistic models. Given a novel video sequence, the algorithm can categorize and localize the human action(s) contained in the video. We test our algorithm on three challenging datasets: the KTH human motion dataset, the Weizmann human action dataset, and a recent dataset of figure skating actions. Our results reflect the promise of such a simple approach. In addition, our algorithm can recognize and localize multiple actions in long and complex video sequences containing multiple motions.  相似文献
2.
一种基于密度的自适应最优LDA模型选择方法   总被引:9,自引:0,他引:9  
主题模型(topic models)被广泛应用在信息分类和检索领域.这些模型通过参数估计从文本集合中提取一个低维的多项式分布集合,用于捕获词之间的相关信息,称为主题(topic).针对模型参数学习过程对主题数目的指定和主题分布初始值非常敏感的问题,作者用图的形式阐述了LDA(Latent Dirichlet Allocation)模型中主题产生的过程,提出并证明当主题之间的相似度最小时模型最优的理论;基于该理论,提出了一种基于密度的自适应最优LDA模型选择方法.实验证明该方法可以在不需要人工调试主题数目的情况下,用相对少的迭代,自动找到最优的主题结构.  相似文献
3.
融合语义主题的图像自动标注   总被引:7,自引:0,他引:7       下载免费PDF全文
由于语义鸿沟的存在,图像自动标注已成为一个重要课题.在概率潜语义分析的基础上,提出了一种融合语义主题的方法以进行图像的标注和检索.首先,为了更准确地建模训练数据,将每幅图像的视觉特征表示为一个视觉"词袋";然后设计一个概率模型分别从视觉模态和文本模态中捕获潜在语义主题,并提出一种自适应的不对称学习方法融合两种语义主题.对于每个图像文档,它在各个模态上的主题分布通过加权进行融合,而权值由该文档的视觉词分布的熵值来确定.于是,融合之后的概率模型适当地关联了视觉模态和文本模态的信息,因此能够很好地预测未知图像的语义标注.在一个通用的Corel图像数据集上,将提出的方法与几种前沿的图像标注方法进行了比较.实验结果表明,该方法具有更好的标注和检索性能.  相似文献
4.
一种基于社会性标注的网页排序算法   总被引:2,自引:0,他引:2  
社会性标注作为一种新的资源管理和共享方式,吸引为数众多的用户参与其中,由此产生的大量社会性标注数据成为网页质量评价的一个新维度.文中研究如何利用社会性标注改进网页检索性能,提出一种有机结合网页和用户的查询相关性与互增强关系的网页排序算法.首先利用统计主题模型,使用相关标签为网页和用户建模,并计算查询相关性.然后利用二部图模型刻画网页和用户间的互增强关系,并使用相关标签与用户兴趣和网页内容的匹配度为互增强关系赋予权重.最后结合查询相关性和互增强关系,以迭代方式同时计算网页和用户的评分.实验结果表明,文中提出的检索模型和互增强模型能够有效地提高排序算法的性能.与目前的代表性算法相比,该算法在检索性能上有明显提高.  相似文献
5.
一种基于HITS的主题敏感爬行方法   总被引:2,自引:0,他引:2       下载免费PDF全文
基于主题的信息采集是信息检索领域内一个新兴且实用的方法,通过将下载页面限定在特定的主题领域,来提高搜索引擎的效率和提供信息的质量。其思想是在爬行过程中按预先定义好的主题有选择地收集相关网页,避免下载主题不相关的网页,其目标是更准确地找到对用户有用的信息。探讨了主题爬虫的一些关键问题,通过改进主题模型、链接分类模型的学习方法及链接分析方法来提高下载网页的主题相关度及质量。在此基础上设计并实现了一个主题爬虫系统,该系统利用主题敏感HITS来计算网页优先级。实验表明效果良好。  相似文献
6.
基于语义扩展的短问题分类   总被引:1,自引:0,他引:1  
问题分类是问答系统任务之一.特别是语音交互方式中,用户的提问较短,具有口语化特征,利用传统文本分类方法对问题进行分类的效果不佳.为此提出一种基于语义扩展的短问题分类方法,该方法使用搜索引擎对问题进行知识扩展;然后,使用主题模型进行特征词选择;最后,利用词语相似度计算获取问题的类别.实验结果表明,所提方法在1 365条真实问题集上平均F-measure值达到0.713,其值高于支持向量机(SVM)、K近邻(KNN)算法和最大熵方法.因此,该方法在问答系统中可以帮助系统提升问题分类的准确率.  相似文献
7.
基于轨迹分段LDA主题模型的视频异常行为检测方法   总被引:1,自引:0,他引:1  
基于目标轨迹的异常行为检测算法忽略了轨迹内部信息,容易导致异常检测虚警率偏高.为解决该问题,提出一种基于轨迹分段主题模型的视频异常行为检测方法.首先将目标原始轨迹根据轨迹转角分段,然后采用分段量化的方式提取轨迹片段中包含的行为特征信息,接着通过潜在狄利克雷分配(LDA)主题模型建模发掘目标轨迹之间的时空关系,最后通过学习所构建的模型并结合贝叶斯理论进行行为模式分析和异常行为检测.分别对两个视频场景进行了目标行为模式分析和异常行为检测的仿真实验,检测出了场景内多种异常行为模式.实验结果表明,通过结合轨迹分段与LDA主题模型,该算法能够充分挖掘目标轨迹内部的行为特征信息,识别多种异常行为模式,并且能提高对异常行为检测的准确率.  相似文献
8.
利用概率主题模型的遥感影像半监督分类   总被引:1,自引:0,他引:1  
土地覆盖是自然环境与人类活动相互作用的中心,而土地覆盖信息主要是通过遥感影像分类来获取,因此影像分类是遥感影像分析的最基本问题之一。在参考基于概率主题模型的高分辨率遥感影像聚类分析的基础上,通过半监督学习最典型的生成模型方法引出了基于概率主题模型的半监督分类(SS-LDA)算法。借鉴SS-LDA模型在文本识别应用的流程,构建了基于SS-LDA算法的高分辨率遥感影像分类的基本流程。通过实验证明,相对于传统的非监督分类与监督分类算法,SS-LDA算法能够获取较高精度的影像分类结果。  相似文献
9.
基于概率主题模型的标签预测   总被引:1,自引:1,他引:0       下载免费PDF全文
袁柳  张龙波 《计算机科学》2011,38(7):175-180
充分利用用户自定义标签信息,是理解Web资源语义,提高Web应用智能程度的重要途径。针对资源标签分派中大量存在的信息不完整、不一致的现象,建立基于用户标记行为特征的概率主题模型,利用概率主题模型实现对标记信息不完整资源的标签预测。根据每个资源所对应的标签的统计特征,可产生不同形式的标签文档,通过分析标签文档所生成主题的性能,确定适合于特定数据集的标签文档形式;利用同一主题内词汇间的高度相关性,设计合理的预测标签排序方法,从而实现对标记信息不完整资源的标签预测以及标签语义不一致现象的检测。在数据集DeliciousT 140和Wikilo+上的测试表明,所提方法能有效实现标签预测,并可提高信息检索的性能。  相似文献
10.
CTM与SVM相结合的文本分类方法   总被引:1,自引:0,他引:1       下载免费PDF全文
王燕霞  邓伟 《计算机工程》2010,36(22):203-205
研究一种相关主题模型(CTM)与支持向量机(SVM)相结合的文本分类方法。该方法用CTM对数据集建模以降低数据的维度,用SVM对简化后的文本数据进行分类。为使CTM模型能够较好地对数据集进行建模,在该方法中用DBSCAN聚类方法对数据进行聚类,根据聚类所得到的聚类中心点数目确定CTM模型的主题参数。实验结果表明,该方法可以加快分类速度并提高分类精度。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号